60
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Novel Sperm-Delivered Toxin Causes Late-Stage Embryo Lethality and Transmission Ratio Distortion in C. elegans

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A sperm-delivered toxin and an embryo-expressed antidote form a co-adapted gene complex in C. elegans that promotes its own transmission to the detriment of organisms carrying it.

          Abstract

          The evolutionary fate of an allele ordinarily depends on its contribution to host fitness. Occasionally, however, genetic elements arise that are able to gain a transmission advantage while simultaneously imposing a fitness cost on their hosts. We previously discovered one such element in C. elegans that gains a transmission advantage through a combination of paternal-effect killing and zygotic self-rescue. Here we demonstrate that this element is composed of a sperm-delivered toxin, peel-1, and an embryo-expressed antidote, zeel-1. peel-1 and zeel-1 are located adjacent to one another in the genome and co-occur in an insertion/deletion polymorphism. peel-1 encodes a novel four-pass transmembrane protein that is expressed in sperm and delivered to the embryo via specialized, sperm-specific vesicles. In the absence of zeel-1, sperm-delivered PEEL-1 causes lethal defects in muscle and epidermal tissue at the 2-fold stage of embryogenesis. zeel-1 is expressed transiently in the embryo and encodes a novel six-pass transmembrane domain fused to a domain with sequence similarity to zyg-11, a substrate-recognition subunit of an E3 ubiquitin ligase. zeel-1 appears to have arisen recently, during an expansion of the zyg-11 family, and the transmembrane domain of zeel-1 is required and partially sufficient for antidote activity. Although PEEL-1 and ZEEL-1 normally function in embryos, these proteins can act at other stages as well. When expressed ectopically in adults, PEEL-1 kills a variety of cell types, and ectopic expression of ZEEL-1 rescues these effects. Our results demonstrate that the tight physical linkage between two novel transmembrane proteins has facilitated their co-evolution into an element capable of promoting its own transmission to the detriment of organisms carrying it.

          Author Summary

          Natural selection typically favors only those genetic variants that increase the overall fitness of the organism. Occasionally, however, variants arise that are able to increase their representation in future generations, while simultaneously reducing the fertility or fecundity of their hosts. Although such variants occur in a wide variety of taxa, their genetic bases and molecular mechanisms remain poorly understood. Here we demonstrate that one such variant in the roundworm C. elegans is composed of two adjacent genes: a sperm-delivered toxin and an embryo-expressed antidote. The toxin protein is expressed in sperm and delivered to the embryo upon fertilization. In the presence of the toxin, embryos that don't inherit the antidote gene die during late embryogenesis, whereas those that do develop normally. Both the toxin and the antidote genes encode transmembrane proteins, and both are evolutionarily novel. Our results imply that the tight physical linkage between these two novel genes has facilitated their evolution into a co-adapted gene complex capable of promoting its own transmission to the detriment of host fitness.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Book: not found

          Molecular Cloning : A Laboratory Manual

          <p>The first two editions of this manual have been mainstays of molecular biology for nearly twenty years, with an unrivalled reputation for reliability, accuracy, and clarity.<br>In this new edition, authors Joseph Sambrook and David Russell have completely updated the book, revising every protocol and adding a mass of new material, to broaden its scope and maintain its unbeatable value for studies in genetics, molecular cell biology, developmental biology, microbiology, neuroscience, and immunology.<br>Handsomely redesigned and presented in new bindings of proven durability, this three–volume work is essential for everyone using today’s biomolecular techniques.<br>The opening chapters describe essential techniques, some well–established, some new, that are used every day in the best laboratories for isolating, analyzing and cloning DNA molecules, both large and small.<br>These are followed by chapters on cDNA cloning and exon trapping, amplification of DNA, generation and use of nucleic acid probes, mutagenesis, and DNA sequencing.<br>The concluding chapters deal with methods to screen expression libraries, express cloned genes in both prokaryotes and eukaryotic cells, analyze transcripts and proteins, and detect protein–protein interactions.<br>The Appendix is a compendium of reagents, vectors, media, technical suppliers, kits, electronic resources and other essential information.<br>As in earlier editions, this is the only manual that explains how to achieve success in cloning and provides a wealth of information about why techniques work, how they were first developed, and how they have evolved. </p>
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A codon-based model of nucleotide substitution for protein-coding DNA sequences.

            (1994)
            A codon-based model for the evolution of protein-coding DNA sequences is presented for use in phylogenetic estimation. A Markov process is used to describe substitutions between codons. Transition/transversion rate bias and codon usage bias are allowed in the model, and selective restraints at the protein level are accommodated using physicochemical distances between the amino acids coded for by the codons. Analyses of two data sets suggest that the new codon-based model can provide a better fit to data than can nucleotide-based models and can produce more reliable estimates of certain biologically important measures such as the transition/transversion rate ratio and the synonymous/nonsynonymous substitution rate ratio.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences.

              We describe a dominant behavioral marker, rol-6(su-1006), and an efficient microinjection procedure which facilitate the recovery of Caenorhabditis elegans transformants. We use these tools to study the mechanism of C.elegans DNA transformation. By injecting mixtures of genetically marked DNA molecules, we show that large extrachromosomal arrays assemble directly from the injected molecules and that homologous recombination drives array assembly. Appropriately placed double-strand breaks stimulated homologous recombination during array formation. Our data indicate that the size of the assembled transgenic structures determines whether or not they will be maintained extrachromosomally or lost. We show that low copy number extrachromosomal transformation can be achieved by adjusting the relative concentration of DNA molecules in the injection mixture. Integration of the injected DNA, though relatively rare, was reproducibly achieved when single-stranded oligonucleotide was co-injected with the double-stranded DNA.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                plos
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                July 2011
                July 2011
                26 July 2011
                : 9
                : 7
                : e1001115
                Affiliations
                [1 ]Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
                [2 ]Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
                [3 ]Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
                [4 ]Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
                [5 ]Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
                [6 ]Department of Biology, New York University, New York, New York, United States of America
                [7 ]Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
                [8 ]Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
                University of Bath, United Kingdom
                Author notes

                The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: HSS MA MVR LK. Performed the experiments: HSS MA JL MVR. Analyzed the data: HSS MA. Contributed reagents/materials/analysis tools: HSS MA JL AO. Wrote the paper: HSS, with input from MA MVR LK.

                ¤: Current address: Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America

                Article
                PBIOLOGY-D-10-00587
                10.1371/journal.pbio.1001115
                3144186
                21814493
                187cd4ed-c2dc-4ecb-80c6-5d6312a59072
                Seidel et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 26 October 2010
                : 16 June 2011
                Page count
                Pages: 21
                Categories
                Research Article
                Biology
                Developmental Biology
                Fertilization
                Sperm-Egg Interactions
                Embryology
                Evolutionary Developmental Biology
                Evolutionary Biology
                Population Genetics
                Genetic Polymorphism
                Haplotypes
                Evolutionary Genetics
                Genomic Evolution
                Genetics
                Heredity
                Epistasis
                Linkage (Genetics)
                Phenotypes
                Molecular Genetics
                Gene Duplication
                Gene Identification and Analysis
                Gene Function
                Genomics
                Genome Evolution
                Model Organisms
                Animal Models
                Caenorhabditis Elegans
                Molecular Cell Biology
                Cellular Types
                Epithelial Cells
                Muscle Cells

                Life sciences
                Life sciences

                Comments

                Comment on this article