2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Biosurfactant production from newly isolated Rhodotorula sp.YBR and its great potential in enhanced removal of hydrocarbons from contaminated soils

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references98

          • Record: found
          • Abstract: not found
          • Article: not found

          Colorimetric Method for Determination of Sugars and Related Substances

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microbial production of surfactants and their commercial potential.

            Many microorganisms, especially bacteria, produce biosurfactants when grown on water-immiscible substrates. Biosurfactants are more effective, selective, environmentally friendly, and stable than many synthetic surfactants. Most common biosurfactants are glycolipids in which carbohydrates are attached to a long-chain aliphatic acid, while others, like lipopeptides, lipoproteins, and heteropolysaccharides, are more complex. Rapid and reliable methods for screening and selection of biosurfactant-producing microorganisms and evaluation of their activity have been developed. Genes involved in rhamnolipid synthesis (rhlAB) and regulation (rhlI and rhlR) in Pseudomonas aeruginosa are characterized, and expression of rhlAB in heterologous hosts is discussed. Genes for surfactin production (sfp, srfA, and comA) in Bacillus spp. are also characterized. Fermentative production of biosurfactants depends primarily on the microbial strain, source of carbon and nitrogen, pH, temperature, and concentration of oxygen and metal ions. Addition of water-immiscible substrates to media and nitrogen and iron limitations in the media result in an overproduction of some biosurfactants. Other important advances are the use of water-soluble substrates and agroindustrial wastes for production, development of continuous recovery processes, and production through biotransformation. Commercialization of biosurfactants in the cosmetic, food, health care, pulp- and paper-processing, coal, ceramic, and metal industries has been proposed. However, the most promising applications are cleaning of oil-contaminated tankers, oil spill management, transportation of heavy crude oil, enhanced oil recovery, recovery of crude oil from sludge, and bioremediation of sites contaminated with hydrocarbons, heavy metals, and other pollutants. Perspectives for future research and applications are also discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microbial degradation of petroleum hydrocarbons.

              Petroleum hydrocarbon pollutants are recalcitrant compounds and are classified as priority pollutants. Cleaning up of these pollutants from environment is a real world problem. Bioremediation has become a major method employed in restoration of petroleum hydrocarbon polluted environments that makes use of natural microbial biodegradation activity. Petroleum hydrocarbons utilizing microorganisms are ubiquitously distributed in environment. They naturally biodegrade pollutants and thereby remove them from the environment. Removal of petroleum hydrocarbon pollutants from environment by applying oleophilic microorganisms (individual isolate/consortium of microorganisms) is ecofriendly and economic. Microbial biodegradation of petroleum hydrocarbon pollutants employs the enzyme catalytic activities of microorganisms to enhance the rate of pollutants degradation. This article provides an overview about bioremediation for petroleum hydrocarbon pollutants. It also includes explanation about hydrocarbon metabolism in microorganisms with a special focus on new insights obtained during past couple of years.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                World Journal of Microbiology and Biotechnology
                World J Microbiol Biotechnol
                Springer Science and Business Media LLC
                0959-3993
                1573-0972
                January 2021
                January 04 2021
                January 2021
                : 37
                : 1
                Article
                10.1007/s11274-020-02983-3
                1885541d-70fc-4f6a-85f2-04e13e191111
                © 2021

                http://www.springer.com/tdm

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article