34
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluation and sensitivity analysis of the ecosystem service functions of haze absorption by green space based on its quality in China

      , , , ,
      Nature Conservation
      Pensoft Publishers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Evaluation of the ecosystem service functions of haze absorption by green space is important for controlling haze. In this study, the ecosystem service functions of haze absorption by green space in China in 2001, 2004, 2007, 2010, 2013, 2016 and 2018 are analyzed based on green space quality and sensitivity using a geographic information system (GIS) and Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. The results showed that the benchmark ecosystem service functions of haze absorption by green space when considering only the area of green space showed a trend that increases first and then decreases in 2001–2018, with 9000458.55 million Kg, 9145110.75 million Kg and 7734526.75 million Kg in 2001, 2013 and 2018, respectively. However, the corrected functions based on green space quality were 7724215.34 million Kg, 8320301.79 million Kg and 6510132.55 million Kg in the corresponding years. This indicated large differences between ecosystem service functions of haze absorption based on the quality and area of green space; only considering the area of green space to evaluate ecosystem service functions will result in overestimation. In terms of the spatial distribution of the ecosystem service functions of haze absorption by green space, there were greater differences in the benchmark and corrected functions, and the spatial distributions of the maximum, intermediate and minimum ecosystem service functions were notably different. However, the benchmark and corrected functions all showed a consistent trend in the rank of their contribution rates and ecosystem service functions as well as consistent distribution trends: the spatial distribution of ecosystem service functions of haze absorption by green space was very different in the same year, but there was little difference among different years. The change coefficients for the ecosystem service functions of haze absorption by arable land and grass land remained stable, whereas the coefficient of sensitivity for forest cover was elastic. Patch density (PD) and the ecosystem service functions of SO2 absorption, NOx absorption, dust retention and total ecosystem services showed a significant negative correlation, with correlation coefficients of -0.407, -0.511, -.330 and -0.332, respectively. In contrast, the area-weighted mean shape index (SAPE_AM) and ecosystem service functions exhibited significant positive relationships with correlation coefficients of 0.650, 0.634, 0.568 and 0.570, respectively. The results provide an improved method for evaluating the ecosystem service functions of haze absorption by green space as well as a reference for the prevention and control of haze and the coordinated development of regional societies, the economy and the environment.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Severe haze in northern China: A synergy of anthropogenic emissions and atmospheric processes

          Significance Severe haze events with large temporal/spatial coverages have occurred frequently in wintertime northern China. These extremes result from a complex interplay between emissions and atmospheric processes and provide a unique scientific platform to gain insights into many aspects of the relevant atmospheric chemistry and physics. Here we synthesize recent progress in understanding severe haze formation in northern China. In particular, we highlight that improved understanding of the emission sources, physical/chemical processes during haze evolution, and interactions with meteorological/climatic changes are necessary to unravel the causes, mechanisms, and trends for haze pollution. This viewpoint established on the basis of sound science is critical for improving haze prediction/forecast, formulating effective regulatory policies by decision makers, and raising public awareness of environmental protection.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Change in ecosystem service values in the San Antonio area, Texas

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Effects of green space spatial pattern on land surface temperature: Implications for sustainable urban planning and climate change adaptation

                Bookmark

                Author and article information

                Journal
                Nature Conservation
                NC
                Pensoft Publishers
                1314-3301
                1314-6947
                July 21 2020
                July 21 2020
                : 40
                : 93-141
                Article
                10.3897/natureconservation.40.23017
                18883524-eded-4692-a7dd-21ccf4d9f3b1
                © 2020

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article