15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mitochondrial Dynamics in Mitochondrial Diseases

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mitochondria are very versatile organelles in continuous fusion and fission processes in response to various cellular signals. Mitochondrial dynamics, including mitochondrial fission/fusion, movements and turnover, are essential for the mitochondrial network quality control. Alterations in mitochondrial dynamics can cause neuropathies such as Charcot-Marie-Tooth disease in which mitochondrial fusion and transport are impaired, or dominant optic atrophy which is caused by a reduced mitochondrial fusion. On the other hand, mitochondrial dysfunction in primary mitochondrial diseases promotes reactive oxygen species production that impairs its own function and dynamics, causing a continuous vicious cycle that aggravates the pathological phenotype. Mitochondrial dynamics provides a new way to understand the pathophysiology of mitochondrial disorders and other diseases related to mitochondria dysfunction such as diabetes, heart failure, or Hungtinton’s disease. The knowledge about mitochondrial dynamics also offers new therapeutics targets in mitochondrial diseases.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: not found

          Mitochondrial diseases in man and mouse.

          Over the past 10 years, mitochondrial defects have been implicated in a wide variety of degenerative diseases, aging, and cancer. Studies on patients with these diseases have revealed much about the complexities of mitochondrial genetics, which involves an interplay between mutations in the mitochondrial and nuclear genomes. However, the pathophysiology of mitochondrial diseases has remained perplexing. The essential role of mitochondrial oxidative phosphorylation in cellular energy production, the generation of reactive oxygen species, and the initiation of apoptosis has suggested a number of novel mechanisms for mitochondrial pathology. The importance and interrelationship of these functions are now being studied in mouse models of mitochondrial disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization.

            Mitochondrial fusion and division play important roles in the regulation of apoptosis. Mitochondrial fusion proteins attenuate apoptosis by inhibiting release of cytochrome c from mitochondria, in part by controlling cristae structures. Mitochondrial division promotes apoptosis by an unknown mechanism. We addressed how division proteins regulate apoptosis using inhibitors of mitochondrial division identified in a chemical screen. The most efficacious inhibitor, mdivi-1 (for mitochondrial division inhibitor) attenuates mitochondrial division in yeast and mammalian cells by selectively inhibiting the mitochondrial division dynamin. In cells, mdivi-1 retards apoptosis by inhibiting mitochondrial outer membrane permeabilization. In vitro, mdivi-1 potently blocks Bid-activated Bax/Bak-dependent cytochrome c release from mitochondria. These data indicate the mitochondrial division dynamin directly regulates mitochondrial outer membrane permeabilization independent of Drp1-mediated division. Our findings raise the interesting possibility that mdivi-1 represents a class of therapeutics for stroke, myocardial infarction, and neurodegenerative diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mitochondrial dynamics and apoptosis.

              In healthy cells, mitochondria continually divide and fuse to form a dynamic interconnecting network. The molecular machinery that mediates this organelle fission and fusion is necessary to maintain mitochondrial integrity, perhaps by facilitating DNA or protein quality control. This network disintegrates during apoptosis at the time of cytochrome c release and prior to caspase activation, yielding more numerous and smaller mitochondria. Recent work shows that proteins involved in mitochondrial fission and fusion also actively participate in apoptosis induction. This review will cover the recent advances and presents competing models on how the mitochondrial fission and fusion machinery may intersect apoptosis pathways.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Diseases
                Diseases
                diseases
                Diseases
                MDPI
                2079-9721
                23 December 2016
                March 2017
                : 5
                : 1
                : 1
                Affiliations
                Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain; juasuariv@ 123456gmail.com (J.M.S.-R.); marvp75@ 123456gmail.com (M.V.-P.); patricia_dlcruz_ojeda@ 123456hotmail.com (P.d.l.C.-O.); mrdelamata@ 123456gmail.com (M.d.l.M.); lobolivares@ 123456hotmail.com (D.C.); manueloropesa@ 123456hotmail.com (M.O.-Á.); isadelavera@ 123456gmail.com (I.d.L.); monikalvarez11@ 123456hotmail.com (M.Á.-C.); raqueluzon@ 123456gmail.com (R.L.-H.)
                Author notes
                [* ]Correspondence: jasanalc@ 123456upo.es ; Tel.: +34-954-978-071; Fax: +34-954-349-376
                Article
                diseases-05-00001
                10.3390/diseases5010001
                5456341
                28933411
                188abb49-4cab-427f-98d5-be4d6889e896
                © 2016 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 14 November 2016
                : 21 December 2016
                Categories
                Review

                mitochondrial disease,mitochondrial dynamics,mitophagy,mitochondrial fusion,mitocondrial fission

                Comments

                Comment on this article