46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tuning the Mammalian Circadian Clock: Robust Synergy of Two Loops

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The circadian clock is accountable for the regulation of internal rhythms in most living organisms. It allows the anticipation of environmental changes during the day and a better adaptation of physiological processes. In mammals the main clock is located in the suprachiasmatic nucleus (SCN) and synchronizes secondary clocks throughout the body. Its molecular constituents form an intracellular network which dictates circadian time and regulates clock-controlled genes. These clock-controlled genes are involved in crucial biological processes including metabolism and cell cycle regulation. Its malfunction can lead to disruption of biological rhythms and cause severe damage to the organism. The detailed mechanisms that govern the circadian system are not yet completely understood. Mathematical models can be of great help to exploit the mechanism of the circadian circuitry. We built a mathematical model for the core clock system using available data on phases and amplitudes of clock components obtained from an extensive literature search. This model was used to answer complex questions for example: how does the degradation rate of Per affect the period of the system and what is the role of the ROR/ Bmal/REV-ERB (RBR) loop? Our findings indicate that an increase in the RNA degradation rate of the clock gene Period ( Per) can contribute to increase or decrease of the period - a consequence of a non-monotonic effect of Per transcript stability on the circadian period identified by our model. Furthermore, we provide theoretical evidence for a potential role of the RBR loop as an independent oscillator. We carried out overexpression experiments on members of the RBR loop which lead to loss of oscillations consistent with our predictions. These findings challenge the role of the RBR loop as a merely auxiliary loop and might change our view of the clock molecular circuitry and of the function of the nuclear receptors (REV-ERB and ROR) as a putative driving force of molecular oscillations.

          Author Summary

          Most organisms have evolved an internal clock which allows them to anticipate and react to the light/dark daily rhythm and is able to generate oscillation with a circa 24 hour rhythm. A molecular network involving feedback loops is responsible for the rhythm generation. A large number of clock-controlled genes pass on time messages and control several biological processes. In spite of its medical importance (role in cancer, sleep disorders, diabetes and others) the mechanism of action of the circadian clock and the role of its constituent's feedback loops remains partially unknown. Using a mathematical model, we were able to bring insight in open circadian biology questions. Firstly, increasing the mRNA degradation rate of Per can contribute to increase or decrease of the period which might explain contradictory experimental findings. Secondly, our data points to a more relevant role of the ROR/ Bmal/REV-ERB loop. In particular, that this loop can be an oscillator on its own. We provide experimental evidence that overexpression of members of the ROR/ Bmal/REV-ERB lead to loss of Bmal reporter mRNA oscillations. The fact that REV-ERB and ROR are nuclear receptors and therefore important regulators in many cellular processes might have important implications for molecular biology and medicine.

          Related collections

          Most cited references81

          • Record: found
          • Abstract: found
          • Article: not found

          The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator.

          Mammalian circadian rhythms are generated by a feedback loop in which BMAL1 and CLOCK, players of the positive limb, activate transcription of the cryptochrome and period genes, components of the negative limb. Bmal1 and Per transcription cycles display nearly opposite phases and are thus governed by different mechanisms. Here, we identify the orphan nuclear receptor REV-ERBalpha as the major regulator of cyclic Bmal1 transcription. Circadian Rev-erbalpha expression is controlled by components of the general feedback loop. Thus, REV-ERBalpha constitutes a molecular link through which components of the negative limb drive antiphasic expression of components of the positive limb. While REV-ERBalpha influences the period length and affects the phase-shifting properties of the clock, it is not required for circadian rhythm generation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Disruption of the Clock Components CLOCK and BMAL1 Leads to Hypoinsulinemia and Diabetes

            The molecular clock maintains energy constancy by producing circadian oscillations of rate-limiting enzymes involved in tissue metabolism across the day and night1–3. During periods of feeding, pancreatic islets secrete insulin to maintain glucose homeostasis, and while rhythmic control of insulin release is recognized to be dysregulated in humans with diabetes4, it is not known how the circadian clock may affect this process. Here we show that pancreatic islets possess self-sustained circadian gene and protein oscillations of the transcription factors CLOCK and BMAL1. The phase of oscillation of islet genes involved in growth, glucose metabolism, and insulin signaling is delayed in circadian mutant mice, and both Clock 5,6 and Bmal1 7 mutants exhibit impaired glucose tolerance, reduced insulin secretion, and defects in size and proliferation of pancreatic islets that worsen with age. Clock disruption leads to transcriptome-wide alterations in the expression of islet genes involved in growth, survival, and synaptic vesicle assembly. Remarkably, conditional ablation of the pancreatic clock causes diabetes mellitus due to defective β-cell function at the very latest stage of stimulus-secretion coupling. These results demonstrate a role for the β-cell clock in coordinating insulin secretion with the sleep-wake cycle, and reveal that ablation of the pancreatic clock can trigger onset of diabetes mellitus.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The genetics of mammalian circadian order and disorder: implications for physiology and disease.

              Circadian cycles affect a variety of physiological processes, and disruptions of normal circadian biology therefore have the potential to influence a range of disease-related pathways. The genetic basis of circadian rhythms is well studied in model organisms and, more recently, studies of the genetic basis of circadian disorders has confirmed the conservation of key players in circadian biology from invertebrates to humans. In addition, important advances have been made in understanding how these molecules influence physiological functions in tissues throughout the body. Together, these studies set the scene for applying our knowledge of circadian biology to the understanding and treatment of a range of human diseases, including cancer and metabolic and behavioural disorders.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                December 2011
                December 2011
                15 December 2011
                : 7
                : 12
                : e1002309
                Affiliations
                [1 ]Institute for Theoretical Biology, Humboldt University, Berlin, Germany
                [2 ]Laboratory of Chronobiology, Institute of Medical Immunology Charité - Universitätsmedizin Berlin, Berlin, Germany
                NNF Center for Protein Research, Denmark
                Author notes

                Conceived and designed the experiments: AR AK HH. Performed the experiments: TW KS. Analyzed the data: AR TW KS. Contributed reagents/materials/analysis tools: AR PW TW. Wrote the paper: AR HH.

                Article
                PCOMPBIOL-D-11-01023
                10.1371/journal.pcbi.1002309
                3240597
                22194677
                188c1d44-f3fa-47da-8970-027134c771c6
                Relógio et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 14 July 2011
                : 31 October 2011
                Page count
                Pages: 18
                Categories
                Research Article
                Biology
                Computational Biology
                Systems Biology

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article