58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Novel mutations in human and mouse SCN4A implicate AMPK in myotonia and periodic paralysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Corrochano Sanchez et al. identify a novel mutation (I588V) in SCN4A, which encodes the Nav1.4 voltage-gated sodium channel, in a patient with myotonia and periodic paralysis. By generating and characterizing a mouse model (‘draggen’) carrying the equivalent point mutation (I582V), they uncover novel pathological and metabolic features of SCN4A channelopathies.

          Abstract

          Mutations in the skeletal muscle channel ( SCN4A), encoding the Na v1.4 voltage-gated sodium channel, are causative of a variety of muscle channelopathies, including non-dystrophic myotonias and periodic paralysis. The effects of many of these mutations on channel function have been characterized both in vitro and in vivo. However, little is known about the consequences of SCN4A mutations downstream from their impact on the electrophysiology of the Na v1.4 channel. Here we report the discovery of a novel SCN4A mutation (c.1762A>G; p.I588V) in a patient with myotonia and periodic paralysis, located within the S1 segment of the second domain of the Na v1.4 channel. Using N-ethyl- N-nitrosourea mutagenesis, we generated and characterized a mouse model (named draggen), carrying the equivalent point mutation (c.1744A>G; p.I582V) to that found in the patient with periodic paralysis and myotonia. Draggen mice have myotonia and suffer from intermittent hind-limb immobility attacks. In-depth characterization of draggen mice uncovered novel systemic metabolic abnormalities in Scn4a mouse models and provided novel insights into disease mechanisms. We discovered metabolic alterations leading to lean mice, as well as abnormal AMP-activated protein kinase activation, which were associated with the immobility attacks and may provide a novel potential therapeutic target.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Muscles, exercise and obesity: skeletal muscle as a secretory organ.

          During the past decade, skeletal muscle has been identified as a secretory organ. Accordingly, we have suggested that cytokines and other peptides that are produced, expressed and released by muscle fibres and exert either autocrine, paracrine or endocrine effects should be classified as myokines. The finding that the muscle secretome consists of several hundred secreted peptides provides a conceptual basis and a whole new paradigm for understanding how muscles communicate with other organs, such as adipose tissue, liver, pancreas, bones and brain. However, some myokines exert their effects within the muscle itself. Thus, myostatin, LIF, IL-6 and IL-7 are involved in muscle hypertrophy and myogenesis, whereas BDNF and IL-6 are involved in AMPK-mediated fat oxidation. IL-6 also appears to have systemic effects on the liver, adipose tissue and the immune system, and mediates crosstalk between intestinal L cells and pancreatic islets. Other myokines include the osteogenic factors IGF-1 and FGF-2; FSTL-1, which improves the endothelial function of the vascular system; and the PGC-1α-dependent myokine irisin, which drives brown-fat-like development. Studies in the past few years suggest the existence of yet unidentified factors, secreted from muscle cells, which may influence cancer cell growth and pancreas function. Many proteins produced by skeletal muscle are dependent upon contraction; therefore, physical inactivity probably leads to an altered myokine response, which could provide a potential mechanism for the association between sedentary behaviour and many chronic diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Rapid Determination of Myosin Heavy Chain Expression in Rat, Mouse, and Human Skeletal Muscle Using Multicolor Immunofluorescence Analysis

            Skeletal muscle is a heterogeneous tissue comprised of fibers with different morphological, functional, and metabolic properties. Different muscles contain varying proportions of fiber types; therefore, accurate identification is important. A number of histochemical methods are used to determine muscle fiber type; however, these techniques have several disadvantages. Immunofluorescence analysis is a sensitive method that allows for simultaneous evaluation of multiple MHC isoforms on a large number of fibers on a single cross-section, and offers a more precise means of identifying fiber types. In this investigation we characterized pure and hybrid fiber type distribution in 10 rat and 10 mouse skeletal muscles, as well as human vastus lateralis (VL) using multicolor immunofluorescence analysis. In addition, we determined fiber type-specific cross-sectional area (CSA), succinate dehydrogenase (SDH) activity, and α-glycerophosphate dehydrogenase (GPD) activity. Using this procedure we were able to easily identify pure and hybrid fiber populations in rat, mouse, and human muscle. Hybrid fibers were identified in all species and made up a significant portion of the total population in some rat and mouse muscles. For example, rat mixed gastrocnemius (MG) contained 12.2% hybrid fibers whereas mouse white tibialis anterior (WTA) contained 12.1% hybrid fibers. Collectively, we outline a simple and time-efficient method for determining MHC expression in skeletal muscle of multiple species. In addition, we provide a useful resource of the pure and hybrid fiber type distribution, fiber CSA, and relative fiber type-specific SDH and GPD activity in a number of rat and mouse muscles.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle.

              Eukaryotic cells possess systems for sensing nutritional stress and inducing compensatory mechanisms that minimize the consumption of ATP while utilizing alternative energy sources. Such stress can also be imposed by increased energy needs, such as in skeletal muscle of exercising animals. In these studies, we consider the role of the metabolic sensor, AMP-activated protein kinase (AMPK), in the regulation of glucose transport in skeletal muscle. Expression in mouse muscle of a dominant inhibitory mutant of AMPK completely blocked the ability of hypoxia or AICAR to activate hexose uptake, while only partially reducing contraction-stimulated hexose uptake. These data indicate that AMPK transmits a portion of the signal by which muscle contraction increases glucose uptake, but other AMPK-independent pathways also contribute to the response.
                Bookmark

                Author and article information

                Journal
                Brain
                Brain
                brainj
                brain
                Brain
                Oxford University Press
                0006-8950
                1460-2156
                December 2014
                20 October 2014
                20 October 2014
                : 137
                : 12
                : 3171-3185
                Affiliations
                1 MRC Mammalian Genetics Unit, Harwell, Oxfordshire, UK
                2 UCL Institute of Neurology, MRC Centre for Neuromuscular Diseases, London, UK
                3 University of Aberdeen, Institute of Medical Sciences, Scotland, UK
                4 Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
                5 Biology Department, University of York, York, UK
                6 Brigham and Women's Hospital, Harvard Medical School, Boston, US
                7 Mondino National Institute of Neurology Foundation, IRCCS, Pavia, Italy
                Author notes
                Correspondence to: Abraham Acevedo-Arozena, MRC Mammalian Genetics Unit, Harwell, Oxfordshire, UK E-mail: a.acevedo@ 123456har.mrc.ac.uk

                *Present address: Institute of Human Movement Sciences and Sport, ETH Zurich

                Article
                awu292
                10.1093/brain/awu292
                4240299
                25348630
                188cb019-213a-42c5-bdb3-51a2966a8f61
                © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 24 March 2014
                : 21 July 2014
                : 20 August 2014
                Page count
                Pages: 15
                Categories
                Original Articles

                Neurosciences
                scn4a,mice,ampk,periodic paralysis,myotonia
                Neurosciences
                scn4a, mice, ampk, periodic paralysis, myotonia

                Comments

                Comment on this article