3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Systematic review of Plasmodium falciparum and Plasmodium vivax polyclonal infections: Impact of prevalence, study population characteristics, and laboratory procedures

      research-article
      1 , 1 , 2 , *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Multiple infections of genetically distinct clones of the same Plasmodium species are common in many malaria endemic settings. Mean multiplicity of infection (MOI) and the proportion of polyclonal infections are often reported as surrogate marker of transmission intensity, yet the relationship with traditional measures such as parasite prevalence is not well understood. We have searched Pubmed for articles on P. falciparum and P. vivax multiplicity, and compared the proportion of polyclonal infections and mean MOI to population prevalence. The impact of the genotyping method, number of genotyping markers, method for diagnosis (microscopy/RDT vs. PCR), presence of clinical symptoms, age, geographic region, and year of sample collection on multiplicity indices were assessed. For P. falciparum, 153 studies met inclusion criteria, yielding 275 individual data points and 33,526 genotyped individuals. The proportion of polyclonal infections ranged from 0–96%, and mean MOI from 1–6.1. For P. vivax, 54 studies met inclusion criteria, yielding 115 data points and 13,325 genotyped individuals. The proportion of polyclonal infections ranged from 0–100%, and mean MOI from 1–3.8. For both species, the proportion of polyclonal infections ranged from very low to close to 100% at low prevalence, while at high prevalence it was always high. Each percentage point increase in prevalence resulted in a 0.34% increase in the proportion of polyclonal P. falciparum infections ( P<0.001), and a 0.78% increase in the proportion of polyclonal P. vivax infections ( P<0.001). In multivariable analysis, higher prevalence, typing multiple markers, diagnosis of infections by PCR, and sampling in Africa were found to result in a higher proportion of P. falciparum polyclonal infections. For P. vivax, prevalence, year of study, typing multiple markers, and geographic region were significant predictors. In conclusion, polyclonal infections are frequently present in all settings, but the association between multiplicity and prevalence is weak.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum.

          Multilocus genotyping of microbial pathogens has revealed a range of population structures, with some bacteria showing extensive recombination and others showing almost complete clonality. The population structure of the protozoan parasite Plasmodium falciparum has been harder to evaluate, since most studies have used a limited number of antigen-encoding loci that are known to be under strong selection. We describe length variation at 12 microsatellite loci in 465 infections collected from 9 locations worldwide. These data reveal dramatic differences in parasite population structure in different locations. Strong linkage disequilibrium (LD) was observed in six of nine populations. Significant LD occurred in all locations with prevalence <1% and in only two of five of the populations from regions with higher transmission intensities. Where present, LD results largely from the presence of identical multilocus genotypes within populations, suggesting high levels of self-fertilization in populations with low levels of transmission. We also observed dramatic variation in diversity and geographical differentiation in different regions. Mean heterozygosities in South American countries (0.3-0.4) were less than half those observed in African locations (0. 76-0.8), with intermediate heterozygosities in the Southeast Asia/Pacific samples (0.51-0.65). Furthermore, variation was distributed among locations in South America (F:(ST) = 0.364) and within locations in Africa (F:(ST) = 0.007). The intraspecific patterns of diversity and genetic differentiation observed in P. falciparum are strikingly similar to those seen in interspecific comparisons of plants and animals with differing levels of outcrossing, suggesting that similar processes may be involved. The differences observed may also reflect the recent colonization of non-African populations from an African source, and the relative influences of epidemiology and population history are difficult to disentangle. These data reveal a range of population structures within a single pathogen species and suggest intimate links between patterns of epidemiology and genetic structure in this organism.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A general SNP-based molecular barcode for Plasmodium falciparum identification and tracking

            Background Single nucleotide polymorphism (SNP) genotyping provides the means to develop a practical, rapid, inexpensive assay that will uniquely identify any Plasmodium falciparum parasite using a small amount of DNA. Such an assay could be used to distinguish recrudescence from re-infection in drug trials, to monitor the frequency and distribution of specific parasites in a patient population undergoing drug treatment or vaccine challenge, or for tracking samples and determining purity of isolates in the laboratory during culture adaptation and sub-cloning, as well as routine passage. Methods A panel of twenty-four SNP markers has been identified that exhibit a high minor allele frequency (average MAF > 35%), for which robust TaqMan genotyping assays were constructed. All SNPs were identified through whole genome sequencing and MAF was estimated through Affymetrix array-based genotyping of a worldwide collection of parasites. These assays create a "molecular barcode" to uniquely identify a parasite genome. Results Using 24 such markers no two parasites known to be of independent origin have yet been found to have the same allele signature. The TaqMan genotyping assays can be performed on a variety of samples including cultured parasites, frozen whole blood, or whole blood spotted onto filter paper with a success rate > 99%. Less than 5 ng of parasite DNA is needed to complete a panel of 24 markers. The ability of this SNP panel to detect and identify parasites was compared to the standard molecular methods, MSP-1 and MSP-2 typing. Conclusion This work provides a facile field-deployable genotyping tool that can be used without special skills with standard lab equipment, and at reasonable cost that will unambiguously identify and track P. falciparum parasites both from patient samples and in the laboratory.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Factors determining the occurrence of submicroscopic malaria infections and their relevance for control

              Measuring the prevalence of malaria infection in population surveys underpins surveillance and control of the parasite. During more than a century of malaria research, parasite infection has been assessed by light microscopy of blood films. This wealth of data is widely used to understand malaria epidemiology, to monitor and inform control strategy1, to map the geographical distribution of malaria over time2 and to aid development of mathematical models. Rapid diagnostic tests (RDTs) based on antigen detection are now also used for prevalence surveys. However, both techniques have limited sensitivity. Molecular detection techniques for malaria3 have a much higher sensitivity and are increasingly revealing the widespread presence of infections with parasite densities below the detection threshold of either microscopy or RDTs. These results fundamentally challenge our current view of malaria epidemiology and burden of infection. In a previous systematic review and meta-analysis we found that microscopy misses on average half of all Plasmodium falciparum infections in endemic areas compared with PCR4. There was high variability between surveys and transmission settings. It remains unclear what factors cause this variation in levels of submicroscopic infections, and to what extent such infections are relevant to current efforts to control and eliminate the parasite. From a clinical perspective, low-density infection has been associated with mild anaemia5 and adverse effects during pregnancy6, but rarely causes acute symptoms. Nevertheless, the public health importance of low-density infections may be significant, as experiments have shown that mosquitoes feeding on individuals who are parasite-negative by microscopy can become infected with malaria7 8. The probability of detecting malarial infection is a function of the density of parasites and the volume of blood examined. Parasite densities in the peripheral blood fluctuate considerably over the course of any single P. falciparum infection and may dip under the microscopic detection threshold9 due to sequestration during the second half of the 48 h life cycle and varying effectiveness of the host's immune response. The volume of blood examined during microscopy slide-reading, if 100 high-power fields are screened, is 0.1–0.25 μl (refs 10, 11, 12), whereas for PCR detection DNA is extracted from 5 to 100 μl in most commonly used protocols. On the basis of these volumes, the theoretical detection limit for standard thick film microscopy is approximately 4–10 parasites per μl, and for PCR it is 0.01–0.2 parasites per μl. In practice, a low number of parasitized red blood cells in a sample is often not sufficient to enable detection due to technical factors such as loss of parasites during staining of microscopy slides10 13 or use of single versus nested PCR protocols. Calibration against cultures with known parasite densities has shown realistic detection limits of 10–100 parasites per μl for microscopy14 and 0.05–10 parasites per μl for various PCR assays15 16. From the perspective of control agencies aiming to reduce transmission, the most important question is to what extent do submicroscopic parasite carriers, who are missed during routine surveys, contribute to sustaining transmission? To become infected with malaria, Anopheles vectors need to take up a minimum of one male and one female gametocyte in a 2- to 3-μl bloodmeal. There is still a considerable probability of this happening at parasite densities that will often be missed by microscopy (for example, 1–10 parasites per μl), both according to mathematical theory and data17, and an aggregated distribution of parasites in the blood may assist transmission at very low densities18. During the scale-up of malaria control, public health agencies must decide what screening tools to use in different populations and whether submicroscopic carriers are a priority for intervention19. With sufficient resources, submicroscopic parasites could be detected in active screening programmes20 and included in evaluations where they may alter estimates of how interventions impact the prevalence of infection. Both from a biological and a public health perspective, it is important to understand where and when submicroscopic carriage is mostly likely to occur. Here we compile and analyse epidemiological data sets to assess firstly the prevalence of submicroscopic parasite carriers, and secondly which factors cause these carriers to be more numerous in some areas and population groups. We explore the roles of immunity, anti-malarial treatment, level of malaria endemicity and technical test performance. On the basis of 106 PCR prevalence surveys, we develop an analysis tool to estimate how prevalent such carriers are likely to be in any given area. We estimate the contribution of submicroscopic parasite carriers to the onward transmission of malaria by combining survey data with human-to-mosquito transmission studies. Results Submicroscopic parasitaemia across the endemicity spectrum We compiled survey data in which P. falciparum prevalence was measured by both microscopy and by PCR in the same individuals through updating a previous systematic review4. One hundred and six surveys met our inclusion criteria for analysis, taking place in endemic populations within a defined geographic area where participants were not selected according to malaria symptoms or test results, and where nested PCR or equivalent was used for parasite detection (see also Methods and Supplementary Table S1). Submicroscopic carriers were defined as those individuals with infections detected by PCR but not by microscopy. The specificity of microscopy relative to PCR is very high (98.4% on average4), and given infrequent reporting of specificity in the included studies we assume in our analysis that slide-positive results are also PCR-positive. Microscopy detected, on average, 54.1% (95% confidence interval (CI), 50.3–58.2%) of all PCR-detected infections across the 106 surveys, but this sensitivity varied widely (Fig. 1a) as in previous analysis4. Regression analysis showed that the PCR prevalence of infection has a strong linear relationship with microscopy prevalence on the log odds scale (Fig. 1a). Stratifying by age group improved the fit to the data with microscopy sensitivity being higher in children only ( 200) so that measures were representative of an average infection. Other human infectiousness studies We searched the literature to find as many studies as possible measuring human-to-mosquito transmission from individuals in malaria-endemic areas with neither asexual parasites nor gametocytes detectable by microscopy, using PubMed and modern transmission studies17 31 as starting points and searching through the relevant literature using bibliographies and a review8. We identified three further relevant studies in addition to the malaria therapy data. One of these directly measured submicroscopic parasitaemia using quantitative nucleic acid sequence-based amplification as well as slide positivity31. Two further human-to-mosquito transmission experiments measured the infectiousness of slide-negative individuals, but their infection status was not tested by molecular methods7 30. We estimated the PCR prevalence in these study populations using the log linear model described in the main text (equation 1, Fig. 1a) and the reported slide prevalence in the study. The prevalence of submicroscopic carriage was calculated as: We assumed all infections from slide negatives arose from these submicroscopic carriers, using them as the denominator in calculating infectiousness. The contribution of slide-positives or submicroscopic carriers to the infectious reservoir was calculated as: The proportion of mosquito infections which would originate from submicroscopic infections was estimated as: Age-prevalence data We extracted the data from all studies which included children and adults and which gave a breakdown of prevalence by microscopy and PCR for at least three age groups. We fit a linear relationship between microscopy sensitivity and age, using the midpoint of the age group, and tested whether underlying population PCR prevalence was a modifying factor. Here we used log prevalence ratios, as log ORs of microscopy: PCR positivity would decline as PCR prevalence increased, even with constant sensitivity in all settings. Author contributions L.C.O. updated the systematic review, did the analysis and drafted the manuscript, T.B. reviewed the studies and collected data, J.T.G. advised and contributed to the analysis, A.L.O. contributed data. All authors contributed to interpretation of data, writing and revising the manuscript, and have seen and approved the final version. Additional information How to cite this article: Okell, L. C. et al. Factors determining the occurrence of submicroscopic malaria infections and their relevance for control. Nat. Commun. 3:1237 doi: 10.1038/ncomms2241 (2012). Supplementary Material Data sources and references Supplementary Table S1 and Supplementary References Prevalence estimation tool Spreadsheet permitting estimation of PCR prevalence from microscopy slide prevalence and vice-versa
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: InvestigationRole: Writing – original draft
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: Funding acquisitionRole: InvestigationRole: Project administrationRole: SupervisionRole: ValidationRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS One
                PLoS One
                plos
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                11 June 2021
                2021
                : 16
                : 6
                : e0249382
                Affiliations
                [1 ] Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
                [2 ] Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States of America
                Instituto Rene Rachou, BRAZIL
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Author information
                https://orcid.org/0000-0002-9354-0414
                Article
                PONE-D-21-07658
                10.1371/journal.pone.0249382
                8195386
                34115783
                18902a9f-e26e-4ccf-93fa-a6cf44ac1064
                © 2021 Lopez, Koepfli

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 8 March 2021
                : 17 May 2021
                Page count
                Figures: 4, Tables: 3, Pages: 15
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/100000060, National Institute of Allergy and Infectious Diseases;
                Award ID: R21AI137891
                Award Recipient :
                CK was supported by National Institutes of Health ( www.nih.gov) grant R21AI137891. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Parasitology
                Parasite Groups
                Apicomplexa
                Plasmodium
                Biology and Life Sciences
                Molecular Biology
                Molecular Biology Techniques
                Genotyping
                Research and Analysis Methods
                Molecular Biology Techniques
                Genotyping
                Medicine and Health Sciences
                Medical Conditions
                Parasitic Diseases
                Biology and Life Sciences
                Molecular Biology
                Molecular Biology Techniques
                Cloning
                Research and Analysis Methods
                Molecular Biology Techniques
                Cloning
                Medicine and Health Sciences
                Medical Conditions
                Parasitic Diseases
                Helminth Infections
                Echinococcosis
                Medicine and Health Sciences
                Medical Conditions
                Tropical Diseases
                Neglected Tropical Diseases
                Echinococcosis
                Biology and Life Sciences
                Molecular Biology
                Molecular Biology Techniques
                Artificial Gene Amplification and Extension
                Polymerase Chain Reaction
                Research and Analysis Methods
                Molecular Biology Techniques
                Artificial Gene Amplification and Extension
                Polymerase Chain Reaction
                People and Places
                Geographical Locations
                Africa
                Earth Sciences
                Geography
                Regional Geography
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article

                scite_

                Similar content368

                Cited by9

                Most referenced authors416