30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Untangling the Diverse and Redundant Mechanisms of Staphylococcus aureus Biofilm Formation

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A major challenge in the management of device-related infections (DRIs) involving microbial biofilms derives from the rapid coating of implanted biomaterials by host-derived glycoproteins and other macromolecules. The performance of modified biomaterial surfaces that limit bacterial colonisation under laboratory conditions is difficult to predict in this in vivo milieu. Biofilms formed by staphylococci have for many decades been recognised as the most frequent cause of biofilm-associated infections with Staphylococcus epidermidis and Staphylococcus aureus being the two main species of staphylococci associated with DRI. Advances in our understanding of staphylococcal biofilm mechanisms have made one fact clear: namely, that this important pathogen has adopted the mantra "to stick to surfaces at all costs" and employs a remarkable array of adherence mechanisms to achieve this goal. Here we will review these diverse biofilm mechanisms, raise questions about why such redundancy exists, and outline potential implications for the development of new biofilm-targeted therapeutics. What Are the Mechanisms of Biofilm Used by Staphylococci? From the earliest identification of poly-N-acetylglucosamine (PNAG)/polysaccharide intercellular adhesin (PIA) as a first known mediator of Staphylococcus epidermidis biofilm formation (reviewed in [1]), interest in this important virulence determinant has led to the discovery of multiple biofilm mechanisms in S. epidermidis and S. aureus. The LPXTG-cell wall-anchored biofilm-associated protein (BAP) in bovine mastitis S. aureus isolates [2], the accumulation-associated protein (Aap) in S. epidermidis [3], and the fibronectin binding proteins (FnBPs) in human methicillin-resistant S. aureus (MRSA) isolates [4] were among the first PIA/PNAG-independent biofilm mechanisms to be described. Other protein adhesins include the cell wall-anchored clumping factor A (ClfA), cell wall-anchored clumping factor B (ClfB), S. aureus surface protein G (SasG), S. aureus surface protein C (SasC), Staphylococcus aureus protein A (Spa), and S. epidermidis surface protein C (SesC), as well as the cell surface extracellular matrix binding protein (Embp) and extracellular adherence protein (Eap) (reviewed in [5]). Release of extracellular DNA following lysis mediated by the major autolysin contributes to biofilm development in both species [6,7]. Lysis-dependent release of cytoplasmic proteins has also been implicated in the biofilm phenotype [8]. Protein adhesins and extracellular DNA (eDNA) are in turn susceptible to protease and nuclease degradation, which can modulate biofilm development, architecture, and release [9]. The small-peptide toxins, termed the phenol-soluble modulins (PSMs), have surfactant qualities that regulate biofilm maturation and dissemination [10]. PSMs can also aggregate into amyloid structures that enhance biofilm formation [11], building on previously described roles for extracellular amyloid fibres in biofilm formation in other bacteria [11]. Surface charge influenced by wall teichoic acid composition also impacts staphylococcal cell interactions with surfaces and the initiation of biofilm formation [12]. Clearly staphylococci possess an array of biofilm mechanisms (Fig 1), and significant progress has been made over the last number of years in our understanding of the complexity of the various stages involved in staphylococcal biofilm attachment, formation, regulation, and disassembly. Application of this knowledge base and future studies will investigate how interactions between different adhesins influence the biofilm phenotype and the pathogenesis of biofilm-associated infections. Such interactions remain largely unexplored, but studies in a number of bacteria have shown interactions between eDNA and other matrix components such as polysaccharide and amyloid [13–15]. In S. aureus, interactions between extracellular DNA, amyloid fibres [16], and beta toxin [17] or between PIA/PNAG and teichoic acids [18] have also been reported. 10.1371/journal.ppat.1005671.g001 Fig 1 Major mechanisms of biofilm expressed by S. aureus. (A) Polysaccharide-type biofilm is dependent of expression of PIA/PNAG by intracellular adhesion operon (icaADBC)-carrying strains and is common in methicillin-sensitive S. aureus isolates. (B) Surface proteins such as BAP, the FnBPs, and SasG/Aap mediate direct cell-to-cell contact during biofilm accumulation. Cytoplasmic proteins and eDNA released following cell lysis can also act as components of the biofilm matrix. (C) Coagulase-mediated conversion of fibrinogen (Fg) into fibrin, which is recruited into a biofilm scaffold that can be dispersed by plasmin produced following staphylokinase-mediated activation of plasminogen. (D) Phenol-soluble modules have surfactant qualities that can promote biofilm dispersal but can also accumulate as amyloid aggregates that promote biofilm accumulation. How Does S. aureus Exploit the Host Machinery to Build a “Biofilm Shield”? The ability of S. aureus to survive in human blood is facilitated by production of coagulase (Coa), which is up-regulated in vivo by the two-component system SaeRS. In the clinical laboratory, Coa or staphylocoagulase production is routinely used to differentiate between S. aureus isolates and the coagulase-negative staphylococci. Whereas the contribution of surface proteins, secreted and lysis-derived proteins, polysaccharide, and eDNA adhesins, is influenced by strain background, the production of Coa, which we recently reported plays a critical role in biofilm formation under physiologically relevant conditions, is universal for all S. aureus strains. Upon maturation, like other biofilm types, the fibrin-shielded biofilms exhibit increased resistance to antimicrobial drugs. Coa binds to host prothrombin forming active staphylothrombin complexes that convert soluble monomeric fibrinogen (Fg) into self-polymerizing insoluble fibrin, which is then recruited by S. aureus to form the biofilm scaffold [19]. A similar mechanism of fibrin scaffold production is attributed to von Willebrand factor-binding protein (vWbp), a second Coa expressed by S. aureus. Upon maturation, like other biofilm types, the fibrin-shielded biofilms exhibit increased resistance to antimicrobial drugs [20]. Coa-mediated biofilm formation is clearly dependent on the bacterial cell making contact with Fg as evidenced by the significant role of the Fg-binding surface protein ClfA in this phenotype under high shear [20]. Other microbial surface components recognizing matrix molecules are likely to contribute to adhesion in static or low shear environments. The physiological importance of fibrin-promoted staphylococcal accumulation is further evidenced in abscess formation [21], joint infections, in which antibiotic-resistant, fibrin-embedded bacterial agglomerations in human synovial fluid are a major virulence determinant [22], and in S. aureus catheter-related infections, which are dependent on the production of fibrin by Coa or vWbp [23]. These studies support a growing body of literature revealing the importance of the fibrin shield protecting S. aureus from uptake by phagocytic cells and survival in the infection milieu [19,24–26]. Why Does S. aureus Retain the Capacity to Express Multiple Apparently Redundant Biofilm Mechanisms? Given that S. aureus is highly unlikely to have retained the capacity to express multiple biofilm phenotypes when just one would suffice, it seems reasonable to suggest that these environmentally regulated biofilm mechanisms are niche-specific and may play overlapping roles in both colonisation and biofilm formation. On the skin where NaCl concentrations are relatively high and water availability is low, production of PIA/PNAG may serve primarily to trap water with its role in intercellular adherence a secondary function. Similarly, up-regulation of FnBP expression in host niches where the pH is more acidic (e.g., urinary tract, vagina, mouth, and skin) appear to favour a biofilm mechanism that also promotes bacterial adherence to extracellular matrix proteins such as fibronectin, Fg, and elastin. Indeed, this general hypothesis may also extend to all surface proteins as well as the autolysin-mediated release of cytoplasmic proteins [8] and extracellular DNA with adherence properties [7]. Physiological levels of Zn2+, which can be elevated at infection sites, play an important role in promoting Aap/SasG-dependent intercellular adhesion, perhaps in part by altering the cell surface via interactions with negatively charged teichoic acids [27]. On the other hand, the regulation of proteinaceous biofilms by bacterial and host proteases may reflect both a bacterial dispersal mechanism and a host response to infections involving protein adhesin-mediated biofilms. Under iron- and nutrient-limiting conditions, which are likely to be encountered in blood, the Coa-mediated conversion of Fg to fibrin on surfaces conditioned with plasma proteins promotes a biofilm phenotype that would not be possible outside the host. Limited iron availability in vivo also promotes expression of Embp, Eap, and PIA, which are regulated by the iron regulator Fur and the SaeRS-two component system [28]. Importantly, the SaeRS system controls Coa expression and is required for fibrin-mediated biofilm on plasma coated surfaces [20]. The physiological relevance of the Coa-mediated biofilm suggests that it is likely to play an important role in S. aureus DRI. However, S. epidermidis and other Coa-negative staphylococci are also a major cause of DRI despite being genetically incapable of producing fibrin-dependent biofilms and rather use polysaccharide and protein adhesin biofilm mechanisms as described above. Returning to the idea that different biofilm adhesins may play overlapping roles in both colonisation and biofilm formation, it would seem likely that Coa-mediated production of fibrin biofilms may be exploited by S. aureus for rapid colonisation of implanted devices but that over longer time periods, other biofilm adhesins may play increasingly important roles in the maturation of the biofilm. Supporting this idea, we recently reported that 24-hour fibrin biofilms were significantly more susceptible to inactivation by antibiotics than FnBP-dependent biofilms of the same age but that over time, the fibrin biofilms became increasingly resistant [20]. What Are the Implications of These Different Biofilm Mechanisms for Future Therapeutics? As noted above, comparative studies revealed that the antibiotics daptomycin, tigecycline, and rifampicin were capable of an almost complete inactivation of 24-hour fibrin-mediated biofilms, whereas FnBP-mediated biofilms were significantly more resistant [20]. A recent study using an antibiotic lock model of infection showed that very high doses of these antibiotics retained significant activity against mature three- and five-day biofilms, which is more likely to reflect the “real-life” clinical scenario in which treatment is started following diagnosis of a DRI [29]. Early diagnosis and intervention against biofilm-associated infections may therefore be of significant therapeutic importance using existing antimicrobial drugs, although the need to administer antimicrobials at many thousand times the minimum inhibitory concentration of the organism to achieve adequate biofilm inactivation remains the major challenge. Dispersal of biofilms by dispersin B, proteases, nucleases, or agents capable of manipulating PSM production have been proposed to have therapeutic potential [9,30]. The isoquinoline alkaloid berberine has been reported to prevent PSM accumulation into amyloid fibrils [31]. Similarly, the fibrin-degrading pathway of the host coagulation cascade, in which activation of host plasminogen generates plasmin, can also be exploited to manipulate S. aureus biofilm, offering a new therapeutic option to treat S. aureus DRI. Fibrin-mediated biofilms can be eradicated by plasmin and other fibrinolytic enzymes such as nattokinase or serrapeptase [20]. Kwiecisnki et al. demonstrated that increasing levels of staphylokinase, which activates plasminogen, inhibited biofilm in a mouse catheter infection model [32], whereas pre-coating catheter surfaces with tissue plasminogen activator also inhibited adhesion and biomass accumulation in the same in vivo model [33]. The drug dabigatran (a pharmacological inhibitor of both staphylothrombin and thrombin) inhibited fibrin-mediated biofilm by blocking the interaction between Coa/vWbp and prothrombin both in vitro and in a murine central venous catheter model [23]. In prosthetic joint infections, pharmacological manipulation of the PSM-controlled interaction between PIA/PNAG and the cell surface, which contributes to the agglomeration of fibrin-dependent, biofilm-like cell clusters, has therapeutic potential [22]. Depending on the complexity of biofilms formed in vivo, a combination of biofilm dispersal agents may be necessary. However, because dispersal agents may seed bacteria to other organs, such therapies would need to be used in combination with systemic antimicrobial drugs. Nevertheless, degradation of the biofilm matrix represents a promising therapeutic approach both for prevention and eradication of biofilms. Collectively, these data underscore the importance of future studies to determine which biofilm mechanism (or combination of mechanisms) is deployed by staphylococci in human DRIs and the susceptibility of in vivo-formed biofilms to antimicrobial therapy. The important role for fibrin shields in staphylococcal virulence, generally [19,24–26], and biofilm-associated infections, specifically, opens up the possibility that active and passive immunization strategies targeting Coa may also represent an effective anti-biofilm strategy. A recent study has shown that monoclonal antibodies raised against the Fg-binding R domain at the C-terminus of Coa marked the fibrin shield for phagocytic killing, protected mice from MRSA sepsis, and enhanced opsonophagocytic killing of MRSA in blood samples from healthy human volunteers [19]. PNAG also shows considerable potential as a vaccine candidate (reviewed in [34]), and a combination vaccine targeting Coa, PNAG, and other biofilm adhesins may also help prevent DRIs. Continued progress in understanding the mechanisms of staphylococcal biofilm and their relevance in different host niches is needed to augment and expand current antimicrobial treatment for these significant infections.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Staphylococcus aureus biofilms: recent developments in biofilm dispersal

          Staphylococcus aureus is a major cause of nosocomial and community-acquired infections and represents a significant burden on the healthcare system. S. aureus attachment to medical implants and host tissue, and the establishment of a mature biofilm, play an important role in the persistence of chronic infections. The formation of a biofilm, and encasement of cells in a polymer-based matrix, decreases the susceptibility to antimicrobials and immune defenses, making these infections difficult to eradicate. During infection, dispersal of cells from the biofilm can result in spread to secondary sites and worsening of the infection. In this review, we discuss the current understanding of the pathways behind biofilm dispersal in S. aureus, with a focus on enzymatic and newly described broad-spectrum dispersal mechanisms. Additionally, we explore potential applications of dispersal in the treatment of biofilm-mediated infections.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A novel Staphylococcus aureus biofilm phenotype mediated by the fibronectin-binding proteins, FnBPA and FnBPB.

            Device-associated infections involving biofilm remain a persistent clinical problem. We recently reported that four methicillin-resistant Staphylococcus aureus (MRSA) strains formed biofilm independently of the icaADBC-encoded exopolysaccharide. Here, we report that MRSA biofilm development was promoted under mildly acidic growth conditions triggered by the addition of glucose to the growth medium. Loss of sortase, which anchors LPXTG-containing proteins to peptidoglycan, reduced the MRSA biofilm phenotype. Furthermore introduction of mutations in fnbA and fnbB, which encode the LPXTG-anchored multifunctional fibrinogen and fibronectin-binding proteins, FnBPA and FnBPB, reduced biofilm formation by several MRSA strains. However, these mutations had no effect on biofilm formation by methicillin-sensitive S. aureus strains. FnBP-promoted biofilm occurred at the level of intercellular accumulation and not primary attachment. Mutation of fnbA or fnbB alone did not substantially affect biofilm, and expression of either gene alone from a complementing plasmid in fnbA fnbB mutants restored biofilm formation. FnBP-promoted biofilm was dependent on the integrity of SarA but not through effects on fnbA or fnbB transcription. Using plasmid constructs lacking regions of FnBPA to complement an fnbAB mutant revealed that the A domain alone and not the domain required for fibronectin binding could promote biofilm. Additionally, an A-domain N304A substitution that abolished fibrinogen binding did not affect biofilm. These data identify a novel S. aureus biofilm phenotype promoted by FnBPA and FnBPB which is apparently independent of the known ligand-binding activities of these multifunctional surface proteins.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Functional Amyloids Composed of Phenol Soluble Modulins Stabilize Staphylococcus aureus Biofilms

              Introduction Staphylococcus aureus is the causative agent of numerous diseases ranging from relatively benign skin conditions to fatal systemic infections. Formation of bacterial biofilms on host tissues and implanted materials contributes to chronic S. aureus infections, as biofilms are exceptionally resistant to host immune response and chemotherapies [1]. Biofilms are multicellular structures encased in a matrix of proteins, polysaccharides, extracellular DNA, and other environmental factors [1], [2]. Biomolecules that digest matrix components (e.g., proteases, DNases, and glycoside hydrolases) can disrupt established biofilms and render detached cells susceptible to antimicrobials [3], [4], [5], [6], [7]. The precise composition of the biofilm matrix varies greatly by strain, physiological state, and nutrient availability [5], [8], [9], [10], [11], [12]. In this study, we examined how growth media affects the composition of the biofilm matrix. This led to the discovery of an extracellular fibril structure in S. aureus biofilms grown in a non-standard rich media. These fibers share morphological and biophysical characteristics with functional bacterial amyloids such as curli in Escherichia coli biofilms, TasA of Bacillus subtilis, and the Fap fimbriae in Pseudomonas aeruginosa [13], [14], [15], [16]. Biochemical and genetic analysis revealed that these fibril structures are composed of small peptides called phenol soluble modulins (PSMs). Mutants incapable of producing PSMs formed biofilms that were susceptible to disassembly by enzymatic degradation and mechanical stress. Previous work has demonstrated that PSMs are surfactant-like peptides that promote biofilm disassembly [17], [18], [19], [20], [21]; exhibit antimicrobial activity against niche bacteria [22], [23], [24]; hinder host immune response by recruiting and lysing neutrophils; and are abundant virulence factors produced by community-associated MRSA strains (CA-MRSA) [18], [25], [26], [27]. The genes encoding the core family of PSM peptides are highly conserved across S. aureus strains: four are expressed from the alpha (αpsm1–4) operon, two are expressed from the beta (βpsm1&2) operon, and the delta hemolysin (hld) is encoded within the regulatory RNA, RNAIII [28], [29], [30]. The significance of the PSMs has only recently been investigated because the coding sequences of the αpsm & βpsm peptides are small enough to have eluded detection by conventional gene annotation programs, and they are still poorly annotated in public databases [29], [30]. We have found that ordered aggregation of PSM peptides into amyloid-like fibers can abrogate the biofilm disassembly activity ascribed to monomeric PSM peptides [12], [17], [18], [19], [20], [21]. Our findings suggest that PSMs can modulate biofilm disassembly using amyloid-like aggregation as a control point for their activity. This is the first report to identify and characterize extracellular fimbriae in the S. aureus biofilm, and our research could lead to new approaches in treating persistent biofilm associated infections. Results Biofilms grown in PNG media resist biofilm disassembly Biofilms that persist in the human body are often resistant to conventional antimicrobial treatment prior to dispersal. To gain insight into how the S. aureus biofilm matrix affects disassembly under different growth conditions, we grew S. aureus flow cell biofilms with various lab media. Next we used enzymes known to target primary matrix components in order to test biofilm resistance (Fig. 1A & 1B). These enzymes include proteinase K (protein), DNaseI (DNA), and dispersin B (polysaccharide). By using a variety of degradative enzymes, we expected to observe complete biofilm eradication. Biofilms grown in tryptic soy broth supplemented with glucose (TSBg) rapidly disassembled after enzymatic treatment (Fig. 1A). However, biofilms grown in peptone-NaCl-glucose (PNG) media did not disassemble after the same enzymatic treatment (Fig. 1B). 10.1371/journal.ppat.1002744.g001 Figure 1 Growth media influences biofilm disassembly. Confocal micrographs of S. aureus SH1000 biofilms grown in TSBg media (A) for 30 hours readily disassemble upon exposure to biofilm matrix degrading enzymes proteinase K, dispersin B, and DNaseI at 0.2 µg/mL each. S. aureus biofilms grown in PNG media (B) for 30 hours fail to disassemble upon exposure to matrix-degrading enzymes. Images are representative of three separate experiments and each side of a grid square represents 20 µm. (C) Biofilms at the air-liquid interface of test tube cultures withstand 1% SDS exposure when grown in PNG media but disassemble when grown in TSBg. Top images show stained test tube biofilms; graph below is quantification of biofilm biomass. * P 90% pure by HPLC. Synthetic peptides were prepared and assayed as previously described [15], [34] to eliminate large aggregates from lyophilization prior to assay. Each dry peptide stock was dissolved to a concentration of 0.5 mg/mL in a 1∶1 mixture of trifluoroacetic acid (TFA) and hexafluoroisopropanol (HFIP). Peptides were then sonicated for 10 minutes and incubated at room temperature for 1 h. Solvent TFA/HFIP was removed by speedvac at room temperature. Dried peptide stocks were stored at −80°C. All assays were performed with equal stoichiometric ratios of 0.1 mg/mL peptide unless otherwise noted. All polymerization assays were performed in 96-well black opaque, polystyrene, TC-treated plates (Corning). Prior to assay, treated peptides were thawed and dissolved in dimethyl sulfoxide (DMSO) to a concentration of 10 mg/mL immediately prior to assay. Freshly dissolved peptides were diluted into sterile ddH2O containing 0.2 mM thioflavin T (ThT) and assayed at room temperature. Fluorescence was measured every 10 minutes after shaking by a Tecan Infinite M200 plate reader at 438 nm excitation and 495 nm emission. ThT fluorescence during polymerization was corrected by subtracting the background intensity of an identical sample without ThT. Additionally, ThT fluorescence and Congo red (CR) absorbance scans were performed on polymerized peptides that were allowed to polymerize for 48 h in ddH2O. Samples were incubated in 0.2 mM ThT or 0.001% (w/v) CR in ddH2O for 15 minutes prior to assay on the Tecan plate reader. CR and ThT scans were corrected by subtracting the background intensity of an identical sample without dye. Circular dichroism spectroscopy Treated peptide stocks were thawed and dissolved in hexafluoroisopropanol (HFIP) to a concentration of 10 mg/mL immediately prior to assay. Triplicate samples consisting of 0.1 mg/mL of each freshly dissolved peptide diluted together in 500 µL sterile ddH2O were incubated with shaking at room temperature for 48 h. Samples were then pelleted at 15,000 RPM for 30 minutes to isolate any aggregated species. The supernatant was carefully removed from the pellet by aspiration and transferred to a clean, sterile eppendorf tube. The remaining pellet was resuspended in 200 µL ddH2O by bath sonication for 10 minutes. The supernatant and pellets of each sample were assayed separately. Far UV circular dichroism (CD) measurements were performed with a Jasco-J715 spectropolarimeter using quartz cells with 0.1 cm path length. CD spectra between 190 and 250 nm were recorded in millidegrees and converted to molar ellipticity using an average MRW of 113 for αPSM1–4, βPSM1&2, and δ-toxin. The average of five scans was recorded at 25°C using a 2 nm bandwidth with a 20 nm min−1 scanning speed. All triplicate samples showed similar ellipticity patterns. Biofilm dispersal assay Synthetic PSM peptides were allowed to polymerize overnight, and fibril formation was verified by TEM imaging. Equivalent concentrations of either polymerized or freshly diluted peptides were added to 24 hours SH1000 biofilms grown in 66% TSB+0.2% glucose and incubated at 37°C for 6 hours. Biofilms were washed to remove non-adherent cells then stained with 0.1% crystal violet, dried, and solublized with acidified ethanol and spectroscopically quantitated at A595. Statistics were performed using a 1-way analysis of variance (ANOVA). Results are expressed as mean ± standard deviation.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, CA USA )
                1553-7366
                1553-7374
                21 July 2016
                July 2016
                : 12
                : 7
                : e1005671
                Affiliations
                [1 ]Department of Clinical Microbiology, Education and Research Centre, Beaumont Hospital, Royal College of Surgeons in Ireland, Dublin, Ireland
                [2 ]Department of Microbiology, Connolly Hospital, Dublin, Ireland
                [3 ]Department of Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
                The University of North Carolina at Chapel Hill, UNITED STATES
                Author notes

                The authors have declared that no competing interests exist.

                Article
                PPATHOGENS-D-16-00835
                10.1371/journal.ppat.1005671
                4956047
                27442433
                1897165e-0325-4621-9376-d687090926e6
                © 2016 Zapotoczna et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                Page count
                Figures: 1, Tables: 0, Pages: 6
                Funding
                Source of funding: Health Research Board Grant HRA_POR/2012/51 to JPO, http://www.hrb.ie. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Pearls
                Biology and Life Sciences
                Microbiology
                Bacteriology
                Bacterial Biofilms
                Biology and Life Sciences
                Microbiology
                Biofilms
                Bacterial Biofilms
                Biology and Life Sciences
                Organisms
                Bacteria
                Staphylococcus
                Staphylococcus Aureus
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Bacterial Pathogens
                Staphylococcus
                Staphylococcus Aureus
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Bacterial Pathogens
                Staphylococcus
                Staphylococcus Aureus
                Biology and Life Sciences
                Biochemistry
                Proteins
                Extracellular Matrix Proteins
                Biology and Life Sciences
                Organisms
                Bacteria
                Staphylococcus
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Bacterial Pathogens
                Staphylococcus
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Bacterial Pathogens
                Staphylococcus
                Biology and Life Sciences
                Biochemistry
                Proteins
                Fibrin
                Biology and life sciences
                Biochemistry
                Proteins
                DNA-binding proteins
                Medicine and Health Sciences
                Infectious Diseases
                Bacterial Diseases
                Staphylococcal Infection
                Biology and Life Sciences
                Microbiology
                Bacteriology
                Bacterial Physiology
                Adhesins
                Biology and Life Sciences
                Microbiology
                Microbial Physiology
                Bacterial Physiology
                Adhesins
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Virulence Factors
                Adhesins

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article