21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Role of Catechins in Cellular Responses to Oxidative Stress

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Catechins are polyphenolic compounds—flavanols of the flavonoid family found in a variety of plants. Green tea, wine and cocoa-based products are the main dietary sources of these flavanols. Catechins have potent antioxidant properties, although in some cases they may act in the cell as pro-oxidants. Catechins are reactive oxygen species (ROS) scavengers and metal ion chelators, whereas their indirect antioxidant activities comprise induction of antioxidant enzymes, inhibition of pro-oxidant enzymes, and production of the phase II detoxification enzymes and antioxidant enzymes. Oxidative stress and ROS are implicated in aging and related dysfunctions, such as neurodegenerative disease, cancer, cardiovascular diseases, and diabetes. Due to their antioxidant properties, catechins may be beneficial in preventing and protecting against diseases caused by oxidative stress. This article reviews the biochemical properties of catechins, their antioxidant activity, and the mechanisms of action involved in the prevention of oxidative stress-caused diseases.

          Related collections

          Most cited references95

          • Record: found
          • Abstract: not found
          • Article: not found

          On the origin of cancer cells.

          O WARBURG (1956)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cancer prevention by tea: animal studies, molecular mechanisms and human relevance.

            Extracts of tea, especially green tea, and tea polyphenols have been shown to inhibit the formation and development of tumours at different organ sites in animal models. There is considerable evidence that tea polyphenols, in particular (-)-epigallocatechin-3-gallate, inhibit enzyme activities and signal transduction pathways, resulting in the suppression of cell proliferation and enhancement of apoptosis, as well as the inhibition of cell invasion,angiogenesis and metastasis. Here, we review these biological activities and existing data relating tea consumption to human cancer risk in an attempt to understand the potential use of tea for cancer prevention.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Beneficial effects of green tea: A literature review

              The health benefits of green tea for a wide variety of ailments, including different types of cancer, heart disease, and liver disease, were reported. Many of these beneficial effects of green tea are related to its catechin, particularly (-)-epigallocatechin-3-gallate, content. There is evidence from in vitro and animal studies on the underlying mechanisms of green tea catechins and their biological actions. There are also human studies on using green tea catechins to treat metabolic syndrome, such as obesity, type II diabetes, and cardiovascular risk factors. Long-term consumption of tea catechins could be beneficial against high-fat diet-induced obesity and type II diabetes and could reduce the risk of coronary disease. Further research that conforms to international standards should be performed to monitor the pharmacological and clinical effects of green tea and to elucidate its mechanisms of action.
                Bookmark

                Author and article information

                Journal
                Molecules
                Molecules
                molecules
                Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry
                MDPI
                1420-3049
                20 April 2018
                April 2018
                : 23
                : 4
                : 965
                Affiliations
                [1 ]Department of Drug Technology and Social Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 4, LT-50161 Kaunas, Lithuania
                [2 ]Institute of Pharmaceutical Technologies, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 4, LT-50161 Kaunas, Lithuania; daliamarija.kopustinskiene@ 123456lsmuni.lt
                Author notes
                [* ]Correspondence: jurga.bernatoniene@ 123456lsmuni.lt ; Tel.: +370-600-63349
                Article
                molecules-23-00965
                10.3390/molecules23040965
                6017297
                29677167
                18a1d7a9-d8b2-417a-9960-ae062a9a1fdc
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 30 March 2018
                : 18 April 2018
                Categories
                Review

                catechin,ros,cancer,cardiovascular diseases,neurodegenerative disorders

                Comments

                Comment on this article