34
views
0
recommends
+1 Recommend
1 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      DNase Sda1 Allows Invasive M1T1 Group A Streptococcus to Prevent TLR9-Dependent Recognition

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Group A Streptococcus (GAS) has developed a broad arsenal of virulence factors that serve to circumvent host defense mechanisms. The virulence factor DNase Sda1 of the hyperinvasive M1T1 GAS clone degrades DNA-based neutrophil extracellular traps allowing GAS to escape extracellular killing. TLR9 is activated by unmethylated CpG-rich bacterial DNA and enhances innate immune resistance. We hypothesized that Sda1 degradation of bacterial DNA could alter TLR9-mediated recognition of GAS by host innate immune cells. We tested this hypothesis using a dual approach: loss and gain of function of DNase in isogenic GAS strains and presence and absence of TLR9 in the host. Either DNA degradation by Sda1 or host deficiency of TLR9 prevented GAS induced IFN-α and TNF-α secretion from murine macrophages and contributed to bacterial survival. Similarly, in a murine necrotizing fasciitis model, IFN-α and TNF-α levels were significantly decreased in wild type mice infected with GAS expressing Sda1, whereas no such Sda1-dependent effect was seen in a TLR9-deficient background. Thus GAS Sda1 suppressed both the TLR9-mediated innate immune response and macrophage bactericidal activity. Our results demonstrate a novel mechanism of bacterial innate immune evasion based on autodegradation of CpG-rich DNA by a bacterial DNase.

          Author Summary

          Group A Streptococcus (GAS) ranks among the top ten human pathogens causing fatal disease. GAS possesses an arsenal of virulence factors that circumvent the primary mammalian defence strategies, the innate immune system. Toll-like receptors (TLRs), allow the host to detect pathogens by recognizing structures or patterns abundant in pathogens but lacking in the mammalian host, including unmethylated CpG-rich bacterial DNA recognized by TLR9. Here we show that GAS DNA but not host DNA triggers TNF-α and interferon type 1 cytokine secretion by monocytic cells, and that this secretion is dependent on the presence of functional TLR9. The highly virulent M1T1 GAS clone expresses the virulence factor DNase Sda1. Sda1-mediated bacterial DNA degradation was shown to prevent TLR9-dependent cytokine release in monocytes, which then fail to effectively phagocytose and kill bacteria. In a mouse necrotizing fasciitis model, the streptococcal DNase Sda1 suppressed TLR9-dependent INF-α and TNF-α induction. Inhibition of TLR9 recognition by a bacterial DNase thus illustrates a novel mechanism of microbial innate immune evasion.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          The global burden of group A streptococcal diseases.

          The global burden of disease caused by group A streptococcus (GAS) is not known. We review recent population-based data to estimate the burden of GAS diseases and highlight deficiencies in the available data. We estimate that there are at least 517,000 deaths each year due to severe GAS diseases (eg, acute rheumatic fever, rheumatic heart disease, post-streptococcal glomerulonephritis, and invasive infections). The prevalence of severe GAS disease is at least 18.1 million cases, with 1.78 million new cases each year. The greatest burden is due to rheumatic heart disease, with a prevalence of at least 15.6 million cases, with 282,000 new cases and 233,000 deaths each year. The burden of invasive GAS diseases is unexpectedly high, with at least 663,000 new cases and 163,000 deaths each year. In addition, there are more than 111 million prevalent cases of GAS pyoderma, and over 616 million incident cases per year of GAS pharyngitis. Epidemiological data from developing countries for most diseases is poor. On a global scale, GAS is an important cause of morbidity and mortality. These data emphasise the need to reinforce current control strategies, develop new primary prevention strategies, and collect better data from developing countries.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An endonuclease allows Streptococcus pneumoniae to escape from neutrophil extracellular traps.

            Streptococcus pneumoniae (pneumococcus) is the most common cause of community-acquired pneumonia, with high morbidity and mortality worldwide. A major feature of pneumococcal pneumonia is an abundant neutrophil infiltration . It was recently shown that activated neutrophils release neutrophil extracellular traps (NETs), which contain antimicrobial proteins bound to a DNA scaffold. NETs provide a high local concentration of antimicrobial components and bind, disarm, and kill microbes extracellularly. Here, we show that pneumococci are trapped but, unlike many other pathogens, not killed by NETs. NET trapping in the lungs, however, may allow the host to confine the infection, reducing the likelihood for the pathogen to spread into the bloodstream. DNases are expressed by many Gram-positive bacterial pathogens, but their role in virulence is not clear. Expression of a surface endonuclease encoded by endA is a common feature of many pneumococcal strains. We show that EndA allows pneumococci to degrade the DNA scaffold of NETs and escape. Furthermore, we demonstrate that escaping NETs promotes spreading of pneumococci from the upper airways to the lungs and from the lungs into the bloodstream during pneumonia.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular insight into invasive group A streptococcal disease.

              Streptococcus pyogenes is also known as group A Streptococcus (GAS) and is an important human pathogen that causes considerable morbidity and mortality worldwide. The GAS serotype M1T1 clone is the most frequently isolated serotype from life-threatening invasive (at a sterile site) infections, such as streptococcal toxic shock-like syndrome and necrotizing fasciitis. Here, we describe the virulence factors and newly discovered molecular events that mediate the in vivo changes from non-invasive GAS serotype M1T1 to the invasive phenotype, and review the invasive-disease trigger for non-M1 GAS. Understanding the molecular basis and mechanism of initiation for streptococcal invasive disease may expedite the discovery of novel therapeutic targets for the treatment and control of severe invasive GAS diseases.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                June 2012
                June 2012
                14 June 2012
                : 8
                : 6
                : e1002736
                Affiliations
                [1 ]Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
                [2 ]Division of Surgical Intensive Care, University Hospital Zurich, University of Zurich, Zurich, Switzerland
                [3 ]Department of Pediatrics, Division of Pharmacology & Drug Discovery and Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, United States of America
                National Institute of Allergy and Infectious Diseases, National Institutes of Health, United States of America
                Author notes

                Conceived and designed the experiments: SU FA RAS VN ASZ. Performed the experiments: SU FA RAS ASZ. Analyzed the data: SU RAS ASZ. Contributed reagents/materials/analysis tools: SU FA RAS VN ASZ. Wrote the paper: SU FA RAS VN ASZ.

                Article
                PPATHOGENS-D-11-02678
                10.1371/journal.ppat.1002736
                3375267
                22719247
                18a8f2b5-761b-4ddc-81bc-3096b4fe17c8
                Uchiyama et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 4 December 2011
                : 20 April 2012
                Page count
                Pages: 12
                Categories
                Research Article
                Biology
                Medicine

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article