31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Investigation of Effects and Mechanisms of Total Flavonoids of Astragalus and Calycosin on Human Erythroleukemia Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Flavonoids are found in most parts of plants and have been shown to have multiple biological activities such as anticancer, anti-inflammation, antibacteria, antivirus, and immune-stimulation. Existing data showed that the total flavonoids of Astragalus (TFA) can provide biological system with resistance to injury and can possess antimutagenic, atherosclerotic inhibition, and other biological effects. This study investigated the effects of TFA and calycosin (a compound isolated from TFA), on apoptosis induction, and cell cycle of human erythroleukemia cell line K562 by an array of techniques, including proliferation (MTT), PI staining, Annexin V/PI double staining, and RT-PCR. The experimental data showed that TFA and calycosin could inhibit the proliferation of K562 cells. The 50% inhibiting concentrations of TFA and calycosin were 98.63  μ g/mL and 130.32  μ g/mL, respectively. However, TFA and calycosin could not induce apoptosis in K562 cells, but could increase the number of the cells in the G 0/G 1 phase. The level of cyclin D1 mRNA in K562 cells decreased after the treatment with TFA and calycosin. This study provides new insights into the functional mechanism of total flavonoids of Astragalus and calycosin on human erythroleukemia cells.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Cyclin D as a therapeutic target in cancer.

          Cyclin D1, and to a lesser extent the other D-type cyclins, is frequently deregulated in cancer and is a biomarker of cancer phenotype and disease progression. The ability of these cyclins to activate the cyclin-dependent kinases (CDKs) CDK4 and CDK6 is the most extensively documented mechanism for their oncogenic actions and provides an attractive therapeutic target. Is this an effective means of targeting the cyclin D oncogenes, and how might the patient subgroups that are most likely to benefit be identified?
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genetic and molecular pathogenesis of mantle cell lymphoma: perspectives for new targeted therapeutics.

            Mantle cell lymphoma (MCL) is a well-defined lymphoid malignancy characterized by a rapid clinical evolution and poor response to current therapeutic protocols. The genetic and molecular mechanisms involved in its pathogenesis combine the dysregulation of cell proliferation and survival pathways with a high level of chromosome instability that seems related to the disruption of the DNA damage response pathway. Understanding these mechanisms and how they affect tumour behaviour is providing the rationale for the identification of reliable predictors of clinical evolution and the design of innovative therapeutic strategies that could open new avenues for the treatment of patients with MCL.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Traditionally used Thai medicinal plants: in vitro anti-inflammatory, anticancer and antioxidant activities.

              In order to assess traditional Thai claims about the therapeutic potential of medicinal plants and to select plants for future phytochemical research, nine plant species with anti-inflammatory uses were selected from Thai textbooks and assessed for their in vitro anti-inflammatory, antiproliferative and antioxidant activities. Nuclear factor-kappaB (NF-kappaB) inhibitory effects in stably transfected HeLa cells were determined by luciferase assay, and effects on LPS-induced pro-inflammatory mediators prostaglandin E2 (PGE2), interleukin (IL)-6, IL-1beta, and tumour necrosis factor (TNF)alpha in primary monocytes were assessed by ELISA. Cytotoxic activities were examined against HeLa cells, human leukaemia CCRF-CEM cells and the multidrug-resistant CEM/ADR5000 subline using the MTT and XTT tests. However, a redox status has been linked with both inflammation and cancer, antioxidant effects were also assessed using the DPPH, lipid-peroxidation, and Folin-Ciocalteau methods. Among all the nine species, Gynura pseudochina var. hispida and Oroxylum indicum showed the most promising NF-kappaB inhibitory effects with the lowest IC(50) values (41.96 and 47.45 microg/ml, respectively). Muehlenbeckia platyclada did not inhibit the NF-kappaB activation but effectively inhibited the release of IL-6, IL-1beta and TNF-alpha with IC(50) values ranging between 0.28 and 8.67 microg/ml. Pouzolzia indica was the most cytotoxic against CCRF-CEM cells and the multidrug-resistant CEM/ADR5000 cells (9.75% and 10.48% viability, at 10 microg/ml, respectively). Rhinacanthus nasutus was the most potent cytotoxicity against HeLa cells (IC(50) 3.63 microg/ml) and showed specific cytotoxicity against the multidrug-resistant CEM/ADR5000 cells (18.72% viability at 10 microg/ml, p<0.0001 when compared to its cytotoxicity against CCRF-CEM cells). Moreover, Oroxylum indicum showed a high level of antioxidant activity by inhibiting lipid-peroxidation (IC(50) 0.08 microg/ml). This study provides in vitro evidence for the use of the Thai plants, most importantly Gynura pseudochina var. hispida, Oroxylum indicum and Muehlenbeckia platyclada as Thai anti-inflammatory remedies and these plants are now a priority for further phytochemical research. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Oxid Med Cell Longev
                Oxid Med Cell Longev
                OXIMED
                Oxidative Medicine and Cellular Longevity
                Hindawi Publishing Corporation
                1942-0900
                1942-0994
                2012
                27 June 2012
                : 2012
                : 209843
                Affiliations
                Department of Blood Transfusion, Chinese PLA General Hospital, Beijing 100853, China
                Author notes

                Academic Editor: Luciano Pirola

                Article
                10.1155/2012/209843
                3394397
                22848779
                18ac7fb9-4aba-4763-9b55-5dc8a6c5ec78
                Copyright © 2012 Dongqing Zhang et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 9 March 2012
                : 10 May 2012
                Categories
                Research Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article