2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      3D-architectured aptasensor for ultrasensitive electrochemical detection of norovirus based on phosphorene-gold nanocomposites

      , , ,
      Sensors and Actuators B: Chemical
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Quantifying thiol-gold interactions towards the efficient strength control.

          The strength of the thiol-gold interactions provides the basis to fabricate robust self-assembled monolayers for diverse applications. Investigation on the stability of thiol-gold interactions has thus become a hot topic. Here we use atomic force microscopy to quantify the stability of individual thiol-gold contacts formed both by isolated single thiols and in self-assembled monolayers on gold surface. Our results show that the oxidized gold surface can enhance greatly the stability of gold-thiol contacts. In addition, the shift of binding modes from a coordinate bond to a covalent bond with the change in environmental pH and interaction time has been observed experimentally. Furthermore, isolated thiol-gold contact is found to be more stable than that in self-assembled monolayers. Our findings revealed mechanisms to control the strength of thiol-gold contacts and will help guide the design of thiol-gold contacts for a variety of practical applications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K

            Black phosphorus attracts enormous attention as a promising layered material for electronic, optoelectronic and thermoelectric applications. Here we report large anisotropy in in-plane thermal conductivity of single-crystal black phosphorus nanoribbons along the zigzag and armchair lattice directions at variable temperatures. Thermal conductivity measurements were carried out under the condition of steady-state longitudinal heat flow using suspended-pad micro-devices. We discovered increasing thermal conductivity anisotropy, up to a factor of two, with temperatures above 100 K. A size effect in thermal conductivity was also observed in which thinner nanoribbons show lower thermal conductivity. Analysed with the relaxation time approximation model using phonon dispersions obtained based on density function perturbation theory, the high anisotropy is attributed mainly to direction-dependent phonon dispersion and partially to phonon–phonon scattering. Our results revealing the intrinsic, orientation-dependent thermal conductivity of black phosphorus are useful for designing devices, as well as understanding fundamental physical properties of layered materials.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The chemistry of the sulfur-gold interface: in search of a unified model.

              Over the last three decades, self-assembled molecular films on solid surfaces have attracted widespread interest as an intellectual and technological challenge to chemists, physicists, materials scientists, and biologists. A variety of technological applications of nanotechnology rely on the possibility of controlling topological, chemical, and functional features at the molecular level. Self-assembled monolayers (SAMs) composed of chemisorbed species represent fundamental building blocks for creating complex structures by a bottom-up approach. These materials take advantage of the flexibility of organic and supramolecular chemistry to generate synthetic surfaces with well-defined chemical and physical properties. These films already serve as structural or functional parts of sensors, biosensors, drug-delivery systems, molecular electronic devices, protecting capping for nanostructures, and coatings for corrosion protection and tribological applications. Thiol SAMs on gold are the most popular molecular films because the resulting oxide-free, clean, flat surfaces can be easily modified both in the gas phase and in liquid media under ambient conditions. In particular, researchers have extensively studied SAMs on Au(111) because they serve as model systems to understand the basic aspects of the self-assembly of organic molecules on well-defined metal surfaces. Also, great interest has arisen in the surface structure of thiol-capped gold nanoparticles (AuNPs) because of simple synthesis methods that produce highly monodisperse particles with controllable size and a high surface/volume ratio. These features make AuNPs very attractive for technological applications in fields ranging from medicine to heterogeneous catalysis. In many applications, the structure and chemistry of the sulfur-gold interface become crucial since they control the system properties. Therefore, many researchers have focused on understanding of the nature of this interface on both planar and nanoparticle thiol-covered surfaces. However, despite the considerable theoretical and experimental efforts made using various sophisticated techniques, the structure and chemical composition of the sulfur-gold interface at the atomic level remains elusive. In particular, the search for a unified model of the chemistry of the S-Au interface illustrates the difficulty of determining the surface chemistry at the nanoscale. This Account provides a state-of-the-art analysis of this problem and raises some questions that deserve further investigation.
                Bookmark

                Author and article information

                Journal
                Sensors and Actuators B: Chemical
                Sensors and Actuators B: Chemical
                Elsevier BV
                09254005
                March 2022
                March 2022
                : 354
                : 131232
                Article
                10.1016/j.snb.2021.131232
                18c6e381-04c2-48d2-8dc0-95c77ded1bfc
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article