Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

Changes in plant species composition of coastal dune habitats over a 20-year period

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Coastal sandy ecosystems are increasingly being threatened by human pressure, causing loss of biodiversity and habitat degradation. Using phytosociological relevés we conducted a re-visitation study in order to analyse changes in floristic composition during the last twenty years along the central Adriatic coast. We observed a significant increase in cover of fore dune and thermophilic species. Even though human activities are major driving forces of change in coastal dune vegetation, the species' cover increase may also be due to a moderate increment in average yearly temperature over the last two decades.

      Abstract

      Coastal sandy ecosystems are increasingly being threatened by human pressure, causing loss of biodiversity, habitat degradation and landscape modifications. However, there are still very few detailed studies focussing on compositional changes in coastal dune plant communities over time. In this work, we investigated how coastal dune European Union (EU) habitats (from pioneer annual beach communities to Mediterranean scrubs on the landward fixed dunes) have changed during the last 20 years. Using phytosociological relevés conducted in 1989–90 and in 2010–12, we investigated changes in floristic composition over time. We then compared plant cover and the proportion of ruderal, alien and habitat diagnostic species (‘focal species’) in the two periods. Finally, we used Ellenberg indicator values to define the ‘preferences’ of the plant species for temperature and moisture. We found that only fore dune habitats showed significant differences in species cover between the two time periods, with higher plant cover in the more recent relevés and a significant increase in thermophilic species. Although previous studies have demonstrated consistent habitat loss in this area, we observed that all coastal dune plant communities remain well represented, after a 20-year period. However, fore dunes have been experiencing significant compositional changes. Although we cannot confirm whether the observed changes are strictly related to climatic changes, to human pressure or to both, we hypothesize that a moderate increment in average yearly temperature may have promoted the increase in plant cover and the spread of thermophilic species. Thus, even though human activities are major driving forces of change in coastal dune vegetation, at the community scale climatic factors may also play important roles. Our study draws on re-visitation studies which appear to constitute a powerful tool for the assessment of the conservation status of EU habitats.

      Related collections

      Most cited references 4

      • Record: found
      • Abstract: found
      • Article: not found

      Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity.

      Anthropogenic drivers of environmental change often have multiple effects, including changes in biodiversity, species composition, and ecosystem functioning. It remains unknown whether such shifts in biodiversity and species composition may, themselves, be major contributors to the total, long-term impacts of anthropogenic drivers on ecosystem functioning. Moreover, although numerous experiments have shown that random losses of species impact the functioning of ecosystems, human-caused losses of biodiversity are rarely random. Here we use results from long-term grassland field experiments to test for direct effects of chronic nutrient enrichment on ecosystem productivity, and for indirect effects of enrichment on productivity mediated by resultant species losses. We found that ecosystem productivity decreased through time most in plots that lost the most species. Chronic nitrogen addition also led to the nonrandom loss of initially dominant native perennial C4 grasses. This loss of dominant plant species was associated with twice as great a loss of productivity per lost species than occurred with random species loss in a nearby biodiversity experiment. Thus, although chronic nitrogen enrichment initially increased productivity, it also led to loss of plant species, including initially dominant species, which then caused substantial diminishing returns from nitrogen fertilization. In contrast, elevated CO2 did not decrease grassland plant diversity, and it consistently promoted productivity over time. Our results support the hypothesis that the long-term impacts of anthropogenic drivers of environmental change on ecosystem functioning can strongly depend on how such drivers gradually decrease biodiversity and restructure communities.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        Variations in atmospheric CO2 growth rates coupled with tropical temperature.

        Previous studies have highlighted the occurrence and intensity of El Niño-Southern Oscillation as important drivers of the interannual variability of the atmospheric CO2 growth rate, but the underlying biogeophysical mechanisms governing such connections remain unclear. Here we show a strong and persistent coupling (r(2) ≈ 0.50) between interannual variations of the CO2 growth rate and tropical land-surface air temperature during 1959 to 2011, with a 1 °C tropical temperature anomaly leading to a 3.5 ± 0.6 Petagrams of carbon per year (PgC/y) CO2 growth-rate anomaly on average. Analysis of simulation results from Dynamic Global Vegetation Models suggests that this temperature-CO2 coupling is contributed mainly by the additive responses of heterotrophic respiration (Rh) and net primary production (NPP) to temperature variations in tropical ecosystems. However, we find a weaker and less consistent (r(2) ≈ 0.25) interannual coupling between CO2 growth rate and tropical land precipitation than diagnosed from the Dynamic Global Vegetation Models, likely resulting from the subtractive responses of tropical Rh and NPP to precipitation anomalies that partly offset each other in the net ecosystem exchange (i.e., net ecosystem exchange ≈ Rh - NPP). Variations in other climate variables (e.g., large-scale cloudiness) and natural disturbances (e.g., volcanic eruptions) may induce transient reductions in the temperature-CO2 coupling, but the relationship is robust during the past 50 y and shows full recovery within a few years after any such major variability event. Therefore, it provides an important diagnostic tool for improved understanding of the contemporary and future global carbon cycle.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The Fate of Threatened Coastal Dune Habitats in Italy under Climate Change Scenarios

          Coastal dunes worldwide harbor threatened habitats characterized by high diversity in terms of plant communities. In Italy, recent assessments have highlighted the insufficient state of conservation of these habitats as defined by the EU Habitats Directive. The effects of predicted climate change could have dramatic consequences for coastal environments in the near future. An assessment of the efficacy of protection measures under climate change is thus a priority. Here, we have developed environmental envelope models for the most widespread dune habitats in Italy, following two complementary approaches: an “indirect” plant-species-based one and a simple “direct” one. We analyzed how habitats distribution will be altered under the effects of two climate change scenarios and evaluated if the current Italian network of protected areas will be effective in the future after distribution shifts. While modeling dune habitats with the “direct” approach was unsatisfactory, “indirect” models had a good predictive performance, highlighting the importance of using species’ responses to climate change for modeling these habitats. The results showed that habitats closer to the sea may even increase their geographical distribution in the near future. The transition dune habitat is projected to remain stable, although mobile and fixed dune habitats are projected to lose most of their actual geographical distribution, the latter being more sensitive to climate change effects. Gap analysis highlighted that the habitats’ distribution is currently adequately covered by protected areas, achieving the conservation target. However, according to predictions, protection level for mobile and fixed dune habitats is predicted to drop drastically under the climate change scenarios which we examined. Our results provide useful insights for setting management priorities and better addressing conservation efforts to preserve these threatened habitats in future.
            Bookmark

            Author and article information

            Affiliations
            [1 ]Centre for Estuarine and Marine Studies, DAIS, Università Ca’ Foscari Venezia , Castello 2737b, 30122 Venezia, Italy
            [2 ]Dipartimento di Scienze, Università degli Studi Roma Tre , V.le Marconi 446, 00146 Roma, Italy
            [3 ]Dipartimento Bioscienze e Territorio, Università degli Studi del Molise , Via Duca degli Abruzzi, 86039 Termoli (CB), Italy
            Author notes
            [* ]Corresponding author's e-mail address: irene.prisco@ 123456uniroma3.it

            Associate Editor: Dennis F. Whigham

            Journal
            AoB Plants
            AoB Plants
            aobpla
            aobpla
            AoB Plants
            Oxford University Press
            2041-2851
            2015
            15 April 2015
            : 7
            25750408
            4398890
            10.1093/aobpla/plv018
            plv018
            Published by Oxford University Press on behalf of the Annals of Botany Company.

            This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

            Counts
            Pages: 10
            Product
            Categories
            1006
            1009
            1014
            Research Articles

            Comments

            Comment on this article