12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Latex Clearing Protein (Lcp) of Streptomyces sp. Strain K30 Is a b-Type Cytochrome and Differs from Rubber Oxygenase A (RoxA) in Its Biophysical Properties.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Specific polyisoprene-cleaving activities of 1.5 U/mg and 4.6 U/mg were determined for purified Strep-tagged latex clearing protein (Lcp) of Streptomyces sp. strain K30 at 23 °C and 37 °C, respectively. Metal analysis revealed the presence of approximately one atom of iron per Lcp molecule. Copper, which had been identified in Lcp1VH2 of Gordonia polyisoprenivorans previously, was below the detection limit in LcpK30. Heme was identified as a cofactor in purified LcpK30 by (i) detection of characteristic α-, β-, and γ (Soret)-bands at 562 nm, 532 nm, and 430 nm in the visible spectrum after chemical reduction, (ii) detection of an acetone-extractable porphyrin molecule, (iii) determination of a heme b-type-specific absorption maximum (556 nm) after chemical conversion of the heme group to a bipyridyl-heme complex, and (iv) detection of a b-heme-specific m/z value of 616.2 via mass spectrometry. Spectroscopic analysis showed that purified Lcp as isolated contains an oxidized heme-Fe(3+) that is free of bound dioxygen. This is in contrast to the rubber oxygenase RoxA, a c-type heme-containing polyisoprene-cleaving enzyme present in Gram-negative rubber degraders, in which the covalently bound heme firmly binds a dioxygen molecule. LcpK30 also differed from RoxA in the lengths of the rubber degradation cleavage products and in having a higher melting point of 61.5 °C (RoxA, 54.3 °C). In summary, RoxA and Lcp both are equipped with a heme cofactor and catalyze an oxidative C-C cleavage reaction but differ in the heme subgroup type and in several biochemical and biophysical properties. These findings suggest differences in the catalytic reaction mechanisms.

          Related collections

          Author and article information

          Journal
          Appl. Environ. Microbiol.
          Applied and environmental microbiology
          1098-5336
          0099-2240
          Jun 2015
          : 81
          : 11
          Affiliations
          [1 ] Institut für Mikrobiologie, Universität Stuttgart, Germany.
          [2 ] Institut für Mikrobiologie, Universität Stuttgart, Germany dieter.jendrossek@imb.uni-stuttgart.de.
          Article
          AEM.00275-15
          10.1128/AEM.00275-15
          4421057
          25819959
          18d3847a-62e7-4be6-98a8-9dfb6015bd51
          Copyright © 2015, American Society for Microbiology. All Rights Reserved.
          History

          Comments

          Comment on this article