Blog
About

4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      miR-190a-5p participates in the regulation of hypoxia-induced pulmonary hypertension by targeting KLF15 and can serve as a biomarker of diagnosis and prognosis in chronic obstructive pulmonary disease complicated with pulmonary hypertension

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          miR-190a-5p expression alters dynamically in response to hypoxia. However, the role of miR-190a-5p expression in hypoxia-induced pulmonary hypertension (PH) remains unclear. We sought to correlate the miR-190a-5p expression levels with the severity, diagnosis, and prognosis of PH in relation to chronic obstructive pulmonary disease (COPD-PH). Additionally, we evaluated the effect of miR-190a-5p through in vitro experiments on human pulmonary endothelial cells (HPECs) that were exposed to hypoxia and in vivo experiments using an animal model of hypoxia-induced PH.

          Methods

          Circulating miR-190a-5p levels were measured from 73 patients with PH and 32 healthy controls through quantitative real-time PCR. The levels of miR-190a-5p and the expression of Krüppel-like factor 15 (KLF15) were analyzed in HPECs that were exposed to hypoxia, and the effects of antagomir-190a-5p in mice with chronic hypoxia-induced PH were tested. Target gene analysis was performed by Western blot and luciferase assay.

          Results

          The miR-190a-5p level was significantly higher in patients with COPD-PH than in the healthy controls. Higher miR-190a-5p levels were associated with a greater severity of COPD-PH. In vitro experiments on HPECs showed that exposure to hypoxia increased the miR-190a-5p levels significantly. KLF15 was validated as a target of miR-190a-5p. Transfection with miR-190a-5p mimicked inhibition of KLF15 expression in HPECs. In the mouse model of PH, antagomir-190a-5p reduced right ventricular systolic pressure and enhanced the KLF15 expression levels in lung tissue.

          Conclusion

          miR-190a-5p regulates hypoxia-induced PH by targeting KLF15. The circulating levels of miR-190a-5p correlate with the severity of COPD-PH, thereby confirming the diagnostic and prognostic value of this parameter in COPD-PH.

          Related collections

          Most cited references 45

          • Record: found
          • Abstract: found
          • Article: not found

          Pulmonary hypertension in chronic lung diseases.

          Chronic obstructive lung disease (COPD) and diffuse parenchymal lung diseases (DPLD), including idiopathic pulmonary fibrosis (IPF) and sarcoidosis, are associated with a high incidence of pulmonary hypertension (PH), which is linked with exercise limitation and a worse prognosis. Patients with combined pulmonary fibrosis and emphysema (CPFE) are particularly prone to the development of PH. Echocardiography and right heart catheterization are the principal modalities for the diagnosis of COPD and DPLD. For discrimination between group 1 PH patients with concomitant respiratory abnormalities and group 3 PH patients (PH caused by lung disease), patients should be transferred to a center with expertise in both PH and lung diseases for comprehensive evaluation. The task force encompassing the authors of this article provided criteria for this discrimination and suggested using the following definitions for group 3 patients, as exemplified for COPD, IPF, and CPFE: COPD/IPF/CPFE without PH (mean pulmonary artery pressure [mPAP] <25 mm Hg); COPD/IPF/CPFE with PH (mPAP ≥25 mm Hg); PH-COPD, PH-IPF, and PH-CPFE); COPD/IPF/CPFE with severe PH (mPAP ≥35 mm Hg or mPAP ≥25 mm Hg with low cardiac index [CI <2.0 l/min/m(2)]; severe PH-COPD, severe PH-IPF, and severe PH-CPFE). The "severe PH group" includes only a minority of chronic lung disease patients who are suspected of having strong general vascular abnormalities (remodeling) accompanying the parenchymal disease and with evidence of an exhausted circulatory reserve rather than an exhausted ventilatory reserve underlying the limitation of exercise capacity. Exertional dyspnea disproportionate to pulmonary function tests, low carbon monoxide diffusion capacity, and rapid decline of arterial oxygenation upon exercise are typical clinical features of this subgroup with poor prognosis. Studies evaluating the effect of pulmonary arterial hypertension drugs currently not approved for group 3 PH patients should focus on this severe PH group, and for the time being, these patients should be transferred to expert centers for individualized patient care.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Parkin protein deficiency exacerbates cardiac injury and reduces survival following myocardial infarction.

            It is known that loss-of-function mutations in the gene encoding Parkin lead to development of Parkinson disease. Recently, Parkin was found to play an important role in the removal of dysfunctional mitochondria via autophagy in neurons. Although Parkin is expressed in the heart, its functional role in this tissue is largely unexplored. In this study, we have investigated the role of Parkin in the myocardium under normal physiological conditions and in response to myocardial infarction. We found that Parkin-deficient (Parkin(-/-)) mice had normal cardiac function for up to 12 months of age as determined by echocardiographic analysis. Although ultrastructural analysis revealed that Parkin-deficient hearts had disorganized mitochondrial networks and significantly smaller mitochondria, mitochondrial function was unaffected. However, Parkin(-/-) mice were much more sensitive to myocardial infarction when compared with wild type mice. Parkin(-/-) mice had reduced survival and developed larger infarcts when compared with wild type mice after the infarction. Interestingly, Parkin protein levels and mitochondrial autophagy (mitophagy) were rapidly increased in the border zone of the infarct in wild type mice. In contrast, Parkin(-/-) myocytes had reduced mitophagy and accumulated swollen, dysfunctional mitochondria after the infarction. Overexpression of Parkin in isolated cardiac myocytes also protected against hypoxia-mediated cell death, whereas nonfunctional Parkinson disease-associated mutants ParkinR42P and ParkinG430D had no effect. Our results suggest that Parkin plays a critical role in adapting to stress in the myocardium by promoting removal of damaged mitochondria.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hypoxia: a master regulator of microRNA biogenesis and activity.

              Hypoxia, or low oxygen tension, is a unique environmental stress that induces global changes in a complex regulatory network of transcription factors and signaling proteins to coordinate cellular adaptations in metabolism, proliferation, DNA repair, and apoptosis. Several lines of evidence now establish microRNAs (miRNAs), which are short noncoding RNAs that regulate gene expression through posttranscriptional mechanisms, as key elements in this response to hypoxia. Oxygen deprivation induces a distinct shift in the expression of a specific group of miRNAs, termed hypoxamirs, and emerging evidence indicates that hypoxia regulates several facets of hypoxamir transcription, maturation, and function. Transcription factors such as hypoxia-inducible factor are upregulated under conditions of low oxygen availability and directly activate the transcription of a subset of hypoxamirs. Conversely, hypoxia selectively represses other hypoxamirs through less well characterized mechanisms. In addition, oxygen deprivation has been directly implicated in epigenetic modifications such as DNA demethylation that control specific miRNA transcription. Finally, hypoxia also modulates the activity of key proteins that control posttranscriptional events in the maturation and activity of miRNAs. Collectively, these findings establish hypoxia as an important proximal regulator of miRNA biogenesis and function. It will be important for future studies to address the relative contributions of transcriptional and posttranscriptional events in the regulation of specific hypoxamirs and how such miRNAs are coordinated in order to integrate into the complex hierarchical regulatory network induced by hypoxia. © 2013 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Int J Chron Obstruct Pulmon Dis
                Int J Chron Obstruct Pulmon Dis
                International Journal of COPD
                International Journal of Chronic Obstructive Pulmonary Disease
                Dove Medical Press
                1176-9106
                1178-2005
                2018
                20 November 2018
                : 13
                : 3777-3790
                Affiliations
                [1 ]Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People’s Republic of China
                [2 ]Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People’s Republic of China
                [3 ]Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People’s Republic of China, aban829@ 123456163.com
                Author notes
                Correspondence: Xiaocong Zeng, Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People’s Republic of China, Tel +86 13 87 710 5671, Fax +86 07 71 533 1171, Email aban829@ 123456163.com
                Article
                copd-13-3777
                10.2147/COPD.S182504
                6251363
                © 2018 Jiang et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Original Research

                Respiratory medicine

                klf15, hypoxia, mir-190a-5p, copd, pulmonary hypertension

                Comments

                Comment on this article