11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Protective role for miR-9-5p in the fibrogenic transformation of human dermal fibroblasts

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Excessive accumulation of extracellular matrix (ECM) proteins is the hallmark of fibrotic diseases, including skin fibrosis. This response relies on the activation of dermal fibroblasts that evolve into a pro-fibrogenic phenotype. One of the major players in this process is the cytokine transforming growth factor-β (TGF-β). MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene expression affecting a wide range of pathophysiological events including fibrogenesis. MicroRNA-9-5p (miR-9-5p) has been shown to exert a protective role in lung and peritoneal fibrosis. This study aimed to evaluate the role of miR-9-5p in skin fibrosis.

          Results

          miR-9-5p is up-regulated in TGF-β1-treated human dermal fibroblasts (HDFs). In silico identification of miR-9-5p targets spotted the type II TGF-β receptor (TGFBR2) as a potential TGF-β signaling-related effector for this miRNA. Consistently, over-expression of miR-9-5p in HDFs down-regulated TGFBR2 at both the mRNA and protein levels and reduced the phosphorylation of Smad2 and the translocation of Smad2/3 to the nucleus. In keeping, over-expression of miR-9-5p significantly delayed TGF-β1-dependent transformation of dermal fibroblasts, decreasing the expression of ECM protein collagen, type I, alpha 1 (Col1α1), and fibronectin (FN), the amount of secreted collagen proteins, and the expression of the archetypal myofibroblast marker alpha-smooth muscle actin (α-SMA). By contrast, specific inhibition of miR-9-5p resulted in enhanced presence of fibrosis markers. The expression of miR-9-5p was also detected in the skin and plasma in the mouse model of bleomycin-induced dermal fibrosis. Using lentiviral constructs, we demonstrated that miR-9-5p over-expression was also capable of deterring fibrogenesis in this same model.

          Conclusions

          miR-9-5p significantly prevents fibrogenesis in skin fibrosis. This is mediated by an abrogation of TGF-β-mediated signaling through the down-regulation of TGFBR2 expression in HDFs. These results may pave the way for future diagnostic or therapeutic developments for skin fibrosis based on miR-9-5p.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s13069-016-0044-2) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure.

          Diastolic dysfunction in response to hypertrophy is a major clinical syndrome with few therapeutic options. MicroRNAs act as negative regulators of gene expression by inhibiting translation or promoting degradation of target mRNAs. Previously, we reported that genetic deletion of the cardiac-specific miR-208a prevents pathological cardiac remodeling and upregulation of Myh7 in response to pressure overload. Whether this miRNA might contribute to diastolic dysfunction or other forms of heart disease is currently unknown. Here, we show that systemic delivery of an antisense oligonucleotide induces potent and sustained silencing of miR-208a in the heart. Therapeutic inhibition of miR-208a by subcutaneous delivery of antimiR-208a during hypertension-induced heart failure in Dahl hypertensive rats dose-dependently prevents pathological myosin switching and cardiac remodeling while improving cardiac function, overall health, and survival. Transcriptional profiling indicates that antimiR-208a evokes prominent effects on cardiac gene expression; plasma analysis indicates significant changes in circulating levels of miRNAs on antimiR-208a treatment. These studies indicate the potential of oligonucleotide-based therapies for modulating cardiac miRNAs and validate miR-208 as a potent therapeutic target for the modulation of cardiac function and remodeling during heart disease progression.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cellular mechanisms of tissue fibrosis. 1. Common and organ-specific mechanisms associated with tissue fibrosis.

            Fibrosis is a pathological scarring process that leads to destruction of organ architecture and impairment of organ function. Chronic loss of organ function in most organs, including bone marrow, heart, intestine, kidney, liver, lung, and skin, is associated with fibrosis, contributing to an estimated one third of natural deaths worldwide. Effective therapies to prevent or to even reverse existing fibrotic lesions are not yet available in any organ. There is hope that an understanding of common fibrosis pathways will lead to development of antifibrotic therapies that are effective in all of these tissues in the future. Here we review common and organ-specific pathways of tissue fibrosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Epigenetic regulation of microRNA expression in colorectal cancer.

              In the last years, microRNAs (miRNA) have emerged as new molecular players involved in carcinogenesis. Deregulation of miRNAs expression has been shown in different human cancer but the molecular mechanism underlying the alteration of miRNA expression is unknown. To identify tumor-supressor miRNAs silenced through aberrant epigenetic events in colorectal cancer (CRC), we used a sequential approach. We first identified 5 miRNAs down-regulated in patient with colorectal cancer samples and located around/on a CpG island. Treatment with a DNA methyltransferase inhibitor and a HDAC inhibitor restored expression of 3 of the 5 microRNAs (hsa-miR-9, hsa-miR-129 and hsa-miR-137) in 3 CRC cell lines. Expression of hsa-miR-9 was inversely correlated with methylation of their promoter regions as measure by MSP and bisulphate sequencing. Further, methylation of the hsa-miR-9-1, hsa-miR-129-2 and hsa-miR-137 CpG islands were frequently observed in CRC cell lines and in primary CRC tumors, but not in normal colonic mucosa. Finally, methylation of hsa-miR-9-1 was associated with the presence of lymph node metastasis. In summary, our results aid in the understanding of miRNA gene regulation showing that aberrant DNA methylation and histone modifications work together to induce silencing of miRNAs in CRC.
                Bookmark

                Author and article information

                Contributors
                mfierro@cbm.csic.es
                slamas@cbm.csic.es
                Journal
                Fibrogenesis Tissue Repair
                Fibrogenesis Tissue Repair
                Fibrogenesis & Tissue Repair
                BioMed Central (London )
                1755-1536
                10 May 2016
                10 May 2016
                2016
                : 9
                : 7
                Affiliations
                Department of Cell Biology and Immunology, Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas–Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
                Article
                44
                10.1186/s13069-016-0044-2
                4891847
                27274768
                18e0b2d1-7af9-45be-a7e2-42c41cd5d245
                © Miguel et al. 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 29 September 2015
                : 4 May 2016
                Funding
                Funded by: MINECO
                Award ID: SAF 2012-31338
                Award ID: CSD 2007-00020
                Award Recipient :
                Funded by: ISCIII
                Award ID: RD12/0021/0009
                Award Recipient :
                Funded by: Comunidad de Madrid (ES)
                Award ID: S2010/BMD-2321
                Award Recipient :
                Funded by: European Cooperation for Science and Technology
                Award ID: BM-1203
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2016

                Molecular biology
                skin fibrosis,mir-9-5p,myofibroblasts,tgf-β signaling
                Molecular biology
                skin fibrosis, mir-9-5p, myofibroblasts, tgf-β signaling

                Comments

                Comment on this article