23
views
0
recommends
+1 Recommend
1 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      McClintock: An Integrated Pipeline for Detecting Transposable Element Insertions in Whole-Genome Shotgun Sequencing Data

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Transposable element (TE) insertions are among the most challenging types of variants to detect in genomic data because of their repetitive nature and complex mechanisms of replication . Nevertheless, the recent availability of large resequencing data sets has spurred the development of many new methods to detect TE insertions in whole-genome shotgun sequences. Here we report an integrated bioinformatics pipeline for the detection of TE insertions in whole-genome shotgun data, called McClintock ( https://github.com/bergmanlab/mcclintock), which automatically runs and standardizes output for multiple TE detection methods. We demonstrate the utility of McClintock by evaluating six TE detection methods using simulated and real genome data from the model microbial eukaryote, Saccharomyces cerevisiae. We find substantial variation among McClintock component methods in their ability to detect nonreference TEs in the yeast genome, but show that nonreference TEs at nearly all biologically realistic locations can be detected in simulated data by combining multiple methods that use split-read and read-pair evidence. In general, our results reveal that split-read methods detect fewer nonreference TE insertions than read-pair methods, but generally have much higher positional accuracy. Analysis of a large sample of real yeast genomes reveals that most McClintock component methods can recover known aspects of TE biology in yeast such as the transpositional activity status of families, target preferences, and target site duplication structure, albeit with varying levels of accuracy. Our work provides a general framework for integrating and analyzing results from multiple TE detection methods, as well as useful guidance for researchers studying TEs in yeast resequencing data.

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          The Bioperl toolkit: Perl modules for the life sciences.

          The Bioperl project is an international open-source collaboration of biologists, bioinformaticians, and computer scientists that has evolved over the past 7 yr into the most comprehensive library of Perl modules available for managing and manipulating life-science information. Bioperl provides an easy-to-use, stable, and consistent programming interface for bioinformatics application programmers. The Bioperl modules have been successfully and repeatedly used to reduce otherwise complex tasks to only a few lines of code. The Bioperl object model has been proven to be flexible enough to support enterprise-level applications such as EnsEMBL, while maintaining an easy learning curve for novice Perl programmers. Bioperl is capable of executing analyses and processing results from programs such as BLAST, ClustalW, or the EMBOSS suite. Interoperation with modules written in Python and Java is supported through the evolving BioCORBA bridge. Bioperl provides access to data stores such as GenBank and SwissProt via a flexible series of sequence input/output modules, and to the emerging common sequence data storage format of the Open Bioinformatics Database Access project. This study describes the overall architecture of the toolkit, the problem domains that it addresses, and gives specific examples of how the toolkit can be used to solve common life-sciences problems. We conclude with a discussion of how the open-source nature of the project has contributed to the development effort.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Population genomics of domestic and wild yeasts

            Since the completion of the genome sequence of Saccharomyces cerevisiae in 19961,2, there has been an exponential increase in complete genome sequences accompanied by great advances in our understanding of genome evolution. Although little is known about the natural and life histories of yeasts in the wild, there are an increasing number of studies looking at ecological and geographic distributions3,4, population structure5-8, and sexual versus asexual reproduction9,10. Less well understood at the whole genome level are the evolutionary processes acting within populations and species leading to adaptation to different environments, phenotypic differences and reproductive isolation. Here we present one- to four-fold or more coverage of the genome sequences of over seventy isolates of the baker's yeast, S. cerevisiae, and its closest relative, S. paradoxus. We examine variation in gene content, SNPs, indels, copy numbers and transposable elements. We find that phenotypic variation broadly correlates with global genome-wide phylogenetic relationships. Interestingly, S. paradoxus populations are well delineated along geographic boundaries while the variation among worldwide S. cerevisiae isolates shows less differentiation and is comparable to a single S. paradoxus population. Rather than one or two domestication events leading to the extant baker's yeasts, the population structure of S. cerevisiae consists of a few well-defined geographically isolated lineages and many different mosaics of these lineages, supporting the idea that human influence provided the opportunity for cross-breeding and production of new combinations of pre-existing variation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              BigWig and BigBed: enabling browsing of large distributed datasets

              Summary: BigWig and BigBed files are compressed binary indexed files containing data at several resolutions that allow the high-performance display of next-generation sequencing experiment results in the UCSC Genome Browser. The visualization is implemented using a multi-layered software approach that takes advantage of specific capabilities of web-based protocols and Linux and UNIX operating systems files, R trees and various indexing and compression tricks. As a result, only the data needed to support the current browser view is transmitted rather than the entire file, enabling fast remote access to large distributed data sets. Availability and implementation: Binaries for the BigWig and BigBed creation and parsing utilities may be downloaded at http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/. Source code for the creation and visualization software is freely available for non-commercial use at http://hgdownload.cse.ucsc.edu/admin/jksrc.zip, implemented in C and supported on Linux. The UCSC Genome Browser is available at http://genome.ucsc.edu Contact: ann@soe.ucsc.edu Supplementary information: Supplementary byte-level details of the BigWig and BigBed file formats are available at Bioinformatics online. For an in-depth description of UCSC data file formats and custom tracks, see http://genome.ucsc.edu/FAQ/FAQformat.html and http://genome.ucsc.edu/goldenPath/help/hgTracksHelp.html
                Bookmark

                Author and article information

                Journal
                G3 (Bethesda)
                Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes|Genomes|Genetics
                Genetics Society of America
                2160-1836
                21 June 2017
                August 2017
                : 7
                : 8
                : 2763-2778
                Affiliations
                [1]Faculty of Life Sciences, University of Manchester, M13 9PL, United Kingdom
                Author notes
                [1]

                Present address: Centro de Biotecnologia e Química Fina, Universidade Católica Portuguesa, Porto, 4202-401, Portugal.

                [2 ]Corresponding author: Department of Genetics and Institute of Bioinformatics, University of Georgia, 120 E. Green St., Athens, GA 30602. E-mail: cbergman@ 123456uga.edu
                Author information
                http://orcid.org/0000-0002-2567-2634
                http://orcid.org/0000-0003-2659-0910
                http://orcid.org/0000-0002-5462-9854
                Article
                GGG_043893
                10.1534/g3.117.043893
                5555480
                28637810
                18e2ad26-3153-4612-ba2b-76dc080e385c
                Copyright © 2017 Nelson et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 14 February 2017
                : 15 June 2017
                Page count
                Figures: 7, Tables: 5, Equations: 0, References: 71, Pages: 16
                Categories
                Investigations

                Genetics
                transposable elements,bioinformatics,genomics,yeast
                Genetics
                transposable elements, bioinformatics, genomics, yeast

                Comments

                Comment on this article