3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genetic characterization of Echinococcus isolates from various intermediate hosts in the Qinghai-Tibetan Plateau Area, China

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study examined Echinococcus spp. genotypes and genetic variants isolated from humans as well as domestic and wild animals from the Qinghai-Tibetan Plateau Area using the cox1 gene. All samples except the pika isolates were identified as the Echinococcus granulosus sensu stricto. Sixteen different haplotypes with considerable intraspecific variation were detected and characterized in mitochondrial cox1 sequences. The parsimonious network of cox1 haplotypes showed star-like features, and the neutrality indexes computed via Tajima's D and Fu's Fs tests showed high negative values in E. granulosus s. s., indicating deviations from neutrality; the Fst values were low among the populations, implying that the populations were not genetically differentiated. The pika isolates were identified as E. multilocularis and E. shiquicus. Only one haplotype was recognized in the pika isolates. E. granulosus s. s. was the predominant species found in animals and humans, followed by E. multilocularis and E. shiquicus, with high genetic diversity circulating among the animals and humans in this area. Further studies are needed to cover many sample collection sites and larger numbers of pathogen isolates, which may reveal abundant strains and/or other haplotypes in the hydatid cysts infecting human and animal populations of the QTPA, China.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Genetic variants within the genus Echinococcus identified by mitochondrial DNA sequencing.

          The pattern of species and strain variation within the genus Echinococcus is complex and controversial. In an attempt to characterise objectively the various species and strains, the sequence of a region of the mitochondrial cytochrome c oxidase subunit I (CO1) gene was determined for 56 Echinococcus isolates. Eleven different genotypes were detected, including 7 within Echinococcus granulosus, and these were used to categorise the isolates. The 4 generally accepted Echinococcus species were clearly distinguishable using this approach. In addition, the consensus view of the strain pattern within E. granulosus, based on a variety of criteria of differentiation, was broadly upheld. Very little variation was detected within Echinococcus multilocularis. Remarkable intra-strain homogeneity was found at the DNA sequence level. This region of the rapidly evolving mitochondrial genome is useful as a marker of species and strain identity and as a preliminary indication of evolutionary divergence within the genus Echinococcus.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ecology and Life Cycle Patterns of Echinococcus Species.

            The genus Echinococcus is composed of eight generally recognized species and one genotypic cluster (Echinococcus canadensis cluster) that may in future be resolved into one to three species. For each species, we review existing information on transmission routes and life cycles in different geographical contexts and - where available - include basic biological information of parasites and hosts (e.g., susceptibility of host species). While some Echinococcus spp. are transmitted in life cycles that involve predominantly domestic animals (e.g., dog - livestock cycles), others are wildlife parasites that do or do not interact with domestic transmission. In many cases, life cycle patterns of the same parasite species differ according to geography. Simple life cycles contrast with transmission patterns that are highly complex, involving multihost systems that may include both domestic and wild mammals. Wildlife transmission may be primary or secondary, i.e., resulting from spillovers from domestic animals. For most of the species and regions, existing information does not yet permit a conclusive description of transmission systems. Such data, however, would be highly relevant, e.g., for anticipation of geographical changes of the presence and frequency of these parasites in a warming world, or for initiating evidence-based control strategies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biology and Systematics of Echinococcus.

              R Thompson (2017)
              The biology of Echinococcus, the causative agent of echinococcosis (hydatid disease) is reviewed with emphasis on the developmental biology of the adult and metacestode stages of the parasite. Major advances include determining the origin, structure and functional activities of the laminated layer and its relationship with the germinal layer; and the isolation, in vitro establishment and characterization of the multipotential germinal cells. Future challenges are to identify the mechanisms that provide Echinococcus with its unique developmental plasticity and the nature of activities at the parasite-host interface, particularly in the definitive host. The revised taxonomy of Echinococcus is presented and the solid nomenclature it provides will be essential in understanding the epidemiology of echinococcosis.
                Bookmark

                Author and article information

                Journal
                Parasitology
                Parasitology
                PAR
                Parasitology
                Cambridge University Press (Cambridge, UK )
                0031-1820
                1469-8161
                September 2019
                21 June 2019
                : 146
                : 10
                : 1305-1312
                Affiliations
                [1 ]Clinical Research Institute of Hydatid Disease, Qinghai Provincial People's Hospital , Xining 810007, China
                [2 ]Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University , State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
                Author notes
                Author for correspondence: Xueyong Zhang, E-mail: zhang_xyong@ 123456163.com
                [*]

                These authors contributed equally to this article.

                Author information
                https://orcid.org/0000-0001-5076-9211
                Article
                S0031182019000544 00054
                10.1017/S0031182019000544
                6700708
                31148526
                18e74e0f-be49-4086-8359-313a21079832
                © Cambridge University Press 2019

                This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 14 January 2019
                : 07 April 2019
                : 13 April 2019
                Page count
                Figures: 3, Tables: 2, References: 65, Pages: 8
                Categories
                Research Article

                Parasitology
                cox1 gene,genetic variation,genotype,haplotypes,hydatid cyst,qinghai-tibetan plateau area
                Parasitology
                cox1 gene, genetic variation, genotype, haplotypes, hydatid cyst, qinghai-tibetan plateau area

                Comments

                Comment on this article