4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Loop-Mediated Isothermal Amplification in Schistosomiasis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human schistosomiasis is one of the most important parasitic diseases, causing around 250 million cases (mostly in Africa) and 280,000–500,000 deaths every year. Due to the limited resources and the far-removed nature of many endemic areas, the implementation of new, sensitive and specific diagnostic tools has had little success. This is particularly true for PCR-based molecular methods that require expensive equipment and trained personnel to be executed. Loop-mediated isothermal amplification (LAMP) along with other isothermal techniques appeared in the early 21st century as an alternative to those methods, overcoming some of the aforementioned limitations and achieving a more inexpensive diagnostic. However, to this date, neither LAMP nor any other isothermal technique have signified a meaningful change in the way schistosomiasis diagnosis is routinely performed. Here, we present the recent developments in LAMP-based schistosomiasis diagnosis. We expose the main advantages and disadvantages of LAMP technology over PCR and other classical diagnostic methods focusing in various research approaches on intermediate hosts, animal models and patients. We also examine its potential clinical application in post-therapy monitoring, as well as its usefulness as a point-of-care test.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Loop-mediated isothermal amplification of DNA.

          T. Notomi (2000)
          We have developed a novel method, termed loop-mediated isothermal amplification (LAMP), that amplifies DNA with high specificity, efficiency and rapidity under isothermal conditions. This method employs a DNA polymerase and a set of four specially designed primers that recognize a total of six distinct sequences on the target DNA. An inner primer containing sequences of the sense and antisense strands of the target DNA initiates LAMP. The following strand displacement DNA synthesis primed by an outer primer releases a single-stranded DNA. This serves as template for DNA synthesis primed by the second inner and outer primers that hybridize to the other end of the target, which produces a stem-loop DNA structure. In subsequent LAMP cycling one inner primer hybridizes to the loop on the product and initiates displacement DNA synthesis, yielding the original stem-loop DNA and a new stem-loop DNA with a stem twice as long. The cycling reaction continues with accumulation of 10(9) copies of target in less than an hour. The final products are stem-loop DNAs with several inverted repeats of the target and cauliflower-like structures with multiple loops formed by annealing between alternately inverted repeats of the target in the same strand. Because LAMP recognizes the target by six distinct sequences initially and by four distinct sequences afterwards, it is expected to amplify the target sequence with high selectivity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human schistosomiasis.

            Human schistosomiasis--or bilharzia--is a parasitic disease caused by trematode flukes of the genus Schistosoma. By conservative estimates, at least 230 million people worldwide are infected with Schistosoma spp. Adult schistosome worms colonise human blood vessels for years, successfully evading the immune system while excreting hundreds to thousands of eggs daily, which must either leave the body in excreta or become trapped in nearby tissues. Trapped eggs induce a distinct immune-mediated granulomatous response that causes local and systemic pathological effects ranging from anaemia, growth stunting, impaired cognition, and decreased physical fitness, to organ-specific effects such as severe hepatosplenism, periportal fibrosis with portal hypertension, and urogenital inflammation and scarring. At present, preventive public health measures in endemic regions consist of treatment once every 1 or 2 years with the isoquinolinone drug, praziquantel, to suppress morbidity. In some locations, elimination of transmission is now the goal; however, more sensitive diagnostics are needed in both the field and clinics, and integrated environmental and health-care management will be needed to ensure elimination. Copyright © 2014 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation.

              The loop-mediated isothermal amplification (LAMP) is a novel nucleic acid amplification method that uses only one type of enzyme. One of the characteristics of the LAMP method is its ability to synthesize extremely large amount of DNA. Accordingly, a large amount of by-product, pyrophosphate ion, is produced, yielding white precipitate of magnesium pyrophosphate in the reaction mixture. Judging the presence or absence of this white precipitate allows easy distinction of whether nucleic acid was amplified by the LAMP method. Since an increase in the turbidity of the reaction mixture according to the production of precipitate correlates with the amount of DNA synthesized, real-time monitoring of the LAMP reaction was achieved by real-time measurement of turbidity. Copyright 2001 Academic Press.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                J Clin Med
                J Clin Med
                jcm
                Journal of Clinical Medicine
                MDPI
                2077-0383
                01 February 2021
                February 2021
                : 10
                : 3
                : 511
                Affiliations
                Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; juanbernalt95@ 123456usal.es (J.G.-B.D.); begofebrer@ 123456usal.es (B.F.-S.); beatrizcregovic@ 123456usal.es (B.C.-V.); ama@ 123456usal.es (A.M.)
                Author notes
                [* ]Correspondence: pfsoto@ 123456usal.es
                Author information
                https://orcid.org/0000-0002-4089-4307
                https://orcid.org/0000-0003-0244-4740
                Article
                jcm-10-00511
                10.3390/jcm10030511
                7867102
                33535489
                18eb4027-ad7a-41c0-b830-2db5d4aec756
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 29 December 2020
                : 28 January 2021
                Categories
                Review

                schistosomiasis,lamp,diagnosis,point-of-care,neglected tropical diseases,molecular diagnostics

                Comments

                Comment on this article