103
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Differential Modulation of Retinal Degeneration by Ccl2 and Cx3cr1 Chemokine Signalling

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Microglia and macrophages are recruited to sites of retinal degeneration where local cytokines and chemokines determine protective or neurotoxic microglia responses. Defining the role of Ccl2-Ccr2 and Cx3cl1-Cx3cr1 signalling for retinal pathology is of particular interest because of its potential role in age-related macular degeneration (AMD). Ccl2, Ccr2, and Cx3cr1 signalling defects impair macrophage trafficking, but have, in several conflicting studies, been reported to show different degrees of age-related retinal degeneration. Ccl2/Cx3cr1 double knockout ( CCDKO) mice show an early onset retinal degeneration and have been suggested as a model for AMD. In order to understand phenotypic discrepancies in different chemokine knockout lines and to study how defects in Ccl2 and/or Cx3cr1 signalling contribute to the described early onset retinal degeneration, we defined primary and secondary pathological events in CCDKO mice. To control for genetic background variability, we compared the original phenotype with that of single Ccl2, Cx3cr1 and Ccl2/Cx3cr1 double knockout mice obtained from backcrosses of CCDKO with C57Bl/6 mice. We found that the primary pathological event in CCDKO mice develops in the inferior outer nuclear layer independently of light around postnatal day P14. RPE and vascular lesions develop secondarily with increasing penetrance with age and are clinically similar to retinal telangiectasia not to choroidal neovascularisation. Furthermore, we provide evidence that a third autosomal recessive gene causes the degeneration in CCDKO mice and in all affected re-derived lines and subsequently demonstrated co-segregation of the naturally occurring RD8 mutation in the Crb1 gene. By comparing CCDKO mice with re-derived CCl2 −/−/Crb1 Rd8/RD8, Cx3cr1 −/−/Crb1 Rd8/RD8 and CCl2 −/−/Cx3cr1 −/−/Crb1 Rd8/RD8 mice, we observed a differential modulation of the retinal phenotype by genetic background and both chemokine signalling pathways. These findings indicate that CCDKO mice are not a model of AMD, but a model for an inherited retinal degeneration that is differentially modulated by Ccl2-Ccr2 and Cx3cl1-Cx3cr1 chemokine signalling.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Global data on visual impairment in the year 2002.

          This paper presents estimates of the prevalence of visual impairment and its causes in 2002, based on the best available evidence derived from recent studies. Estimates were determined from data on low vision and blindness as defined in the International statistical classification of diseases, injuries and causes of death, 10th revision. The number of people with visual impairment worldwide in 2002 was in excess of 161 million, of whom about 37 million were blind. The burden of visual impairment is not distributed uniformly throughout the world: the least developed regions carry the largest share. Visual impairment is also unequally distributed across age groups, being largely confined to adults 50 years of age and older. A distribution imbalance is also found with regard to gender throughout the world: females have a significantly higher risk of having visual impairment than males. Notwithstanding the progress in surgical intervention that has been made in many countries over the last few decades, cataract remains the leading cause of visual impairment in all regions of the world, except in the most developed countries. Other major causes of visual impairment are, in order of importance, glaucoma, age-related macular degeneration, diabetic retinopathy and trachoma.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prevalence of age-related macular degeneration in the United States.

            To estimate the prevalence and distribution of age-related macular degeneration (AMD) in the United States by age, race/ethnicity, and gender. Summary prevalence estimates of drusen 125 microm or larger, neovascular AMD, and geographic atrophy were prepared separately for black and white persons in 5-year age intervals starting at 40 years. The estimated rates were based on a meta-analysis of recent population-based studies in the United States, Australia, and Europe. These rates were applied to 2000 US Census data and to projected US population figures for 2020 to estimate the number of the US population with drusen and AMD. The overall prevalence of neovascular AMD and/or geographic atrophy in the US population 40 years and older is estimated to be 1.47% (95% confidence interval, 1.38%-1.55%), with 1.75 million citizens having AMD. The prevalence of AMD increased dramatically with age, with more than 15% of the white women older than 80 years having neovascular AMD and/or geographic atrophy. More than 7 million individuals had drusen measuring 125 microm or larger and were, therefore, at substantial risk of developing AMD. Owing to the rapidly aging population, the number of persons having AMD will increase by 50% to 2.95 million in 2020. Age-related macular degeneration was far more prevalent among white than among black persons. Age-related macular degeneration affects more than 1.75 million individuals in the United States. Owing to the rapid aging of the US population, this number will increase to almost 3 million by 2020.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Control of microglial neurotoxicity by the fractalkine receptor.

              Microglia, the resident inflammatory cells of the CNS, are the only CNS cells that express the fractalkine receptor (CX3CR1). Using three different in vivo models, we show that CX3CR1 deficiency dysregulates microglial responses, resulting in neurotoxicity. Following peripheral lipopolysaccharide injections, Cx3cr1-/- mice showed cell-autonomous microglial neurotoxicity. In a toxic model of Parkinson disease and a transgenic model of amyotrophic lateral sclerosis, Cx3cr1-/- mice showed more extensive neuronal cell loss than Cx3cr1+ littermate controls. Augmenting CX3CR1 signaling may protect against microglial neurotoxicity, whereas CNS penetration by pharmaceutical CX3CR1 antagonists could increase neuronal vulnerability.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                24 April 2012
                25 April 2012
                : 7
                : 4
                : e35551
                Affiliations
                [1 ]Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
                [2 ]Imaging Unit, UCL Institute of Ophthalmology, London, United Kingdom
                [3 ]Department of Visual Science, UCL Institute of Ophthalmology, London, United Kingdom
                [4 ]National Institutes of Health and Research Biomedical Research Center for Ophthalmology, Moorfields Eye Hospital, National Health Science Foundation Trust, UCL Institute of Ophthalmology, London, United Kingdom
                Center of Ophtalmology, Germany
                Author notes

                Conceived and designed the experiments: UFL REM JWB RRA. Performed the experiments: UFL CAL SR PMM JAC HA VL LC. Analyzed the data: UFL CAL SR PMM HA. Contributed reagents/materials/analysis tools: FWF. Wrote the paper: UFL CAL RRA.

                [¤]

                Current address: Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, United Kingdom

                Article
                PONE-D-12-00335
                10.1371/journal.pone.0035551
                3335860
                22545116
                18f24288-926e-4801-93f2-a584a9d6e675
                Luhmann et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 3 January 2012
                : 21 March 2012
                Page count
                Pages: 17
                Categories
                Research Article
                Biology
                Anatomy and Physiology
                Physiological Processes
                Aging
                Ocular System
                Genetics
                Animal Genetics
                Gene Function
                Immunology
                Immunity
                Innate Immunity
                Model Organisms
                Animal Models
                Mouse
                Medicine
                Cardiovascular
                Vascular Biology
                Ophthalmology
                Inherited Eye Disorders
                Macular Disorders
                Retinal Disorders

                Uncategorized
                Uncategorized

                Comments

                Comment on this article