10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tolerogenic Immunotherapy: Targeting DC Surface Receptors to Induce Antigen-Specific Tolerance

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dendritic cells (DCs) are well-established as major players in the regulation of immune responses. They either induce inflammatory or tolerogenic responses, depending on the DC-subtype and stimuli they receive from the local environment. This dual capacity of DCs has raised therapeutic interest for their use to modify immune-activation via the generation of tolerogenic DCs (tolDCs). Several compounds such as vitamin D3, retinoic acid, dexamethasone, or IL-10 and TGF-β have shown potency in the induction of tolDCs. However, an increasing interest exists in defining tolerance inducing receptors on DCs for new targeting strategies aimed to develop tolerance inducing immunotherapies, on which we focus particular in this review. Ligation of specific cell surface molecules on DCs can result in antigen presentation to T cells in the presence of inhibitory costimulatory molecules and tolerogenic cytokines, giving rise to regulatory T cells. The combination of factors such as antigen structure and conformation, delivery method, and receptor specificity is of paramount importance. During the last decades, research provided many tools that can specifically target various receptors on DCs to induce a tolerogenic phenotype. Based on advances in the knowledge of pathogen recognition receptor expression profiles in human DC subsets, the most promising cell surface receptors that are currently being explored as possible targets for the induction of tolerance in DCs will be discussed. We also review the different strategies that are being tested to target DC receptors such as antigen-carbohydrate conjugates, antibody-antigen fusion proteins and antigen-adjuvant conjugates.

          Related collections

          Most cited references136

          • Record: found
          • Abstract: found
          • Article: not found

          Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors

          Dendritic cells (DCs) and monocytes play a central role in pathogen sensing, phagocytosis, and antigen presentation and consist of multiple specialized subtypes. However, their identities and interrelationships are not fully understood. Using unbiased single-cell RNA sequencing (RNA-seq) of ~2400 cells, we identified six human DCs and four monocyte subtypes in human blood. Our study reveals a new DC subset that shares properties with plasmacytoid DCs (pDCs) but potently activates T cells, thus redefining pDCs; a new subdivision within the CD1C+ subset of DCs; the relationship between blastic plasmacytoid DC neoplasia cells and healthy DCs; and circulating progenitor of conventional DCs (cDCs). Our revised taxonomy will enable more accurate functional and developmental analyses as well as immune monitoring in health and disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Decisions about dendritic cells: past, present, and future.

            A properly functioning adaptive immune system signifies the best features of life. It is diverse beyond compare, tolerant without fail, and capable of behaving appropriately with a myriad of infections and other challenges. Dendritic cells are required to explain how this remarkable system is energized and directed. I frame this article in terms of the major decisions that my colleagues and I have made in dendritic cell science and some of the guiding themes at the time the decisions were made. As a result of progress worldwide, there is now evidence of a central role for dendritic cells in initiating antigen-specific immunity and tolerance. The in vivo distribution and development of a previously unrecognized white cell lineage is better understood, as is the importance of dendritic cell maturation to link innate and adaptive immunity in response to many stimuli. Our current focus is on antigen uptake receptors on dendritic cells. These receptors enable experiments involving selective targeting of antigens in situ and new approaches to vaccine design in preclinical and clinical systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting.

              Dendritic cells (DCs) form a remarkable cellular network that shapes adaptive immune responses according to peripheral cues. After four decades of research, we now know that DCs arise from a hematopoietic lineage distinct from other leukocytes, establishing the DC system as a unique hematopoietic branch. Recent work has also established that tissue DCs consist of developmentally and functionally distinct subsets that differentially regulate T lymphocyte function. This review discusses major advances in our understanding of the regulation of DC lineage commitment, differentiation, diversification, and function in situ.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                19 February 2021
                2021
                : 12
                : 643240
                Affiliations
                [1] 1Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection & Immunity, University of Amsterdam , Amsterdam, Netherlands
                [2] 2Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection & Immunity, Vrije Universiteit Amsterdam , Amsterdam, Netherlands
                [3] 3Department of Otorhinolaryngology, Amsterdam University Medical Centers, University of Amsterdam , Amsterdam, Netherlands
                Author notes

                Edited by: Irina Caminschi, Monash University, Australia

                Reviewed by: Angel L. Corbi, Consejo Superior de Investigaciones Científicas (CSIC), Spain; Laura Santambrogio, Cornell University, United States

                *Correspondence: Yvette van Kooyk y.vankooyk@ 123456amsterdamumc.nl

                This article was submitted to Antigen Presenting Cell Biology, a section of the journal Frontiers in Immunology

                †These authors have contributed equally to this work

                Article
                10.3389/fimmu.2021.643240
                7933040
                33679806
                18fdd9e4-94d5-48ce-97eb-9fb53e9abe8a
                Copyright © 2021 Castenmiller, Keumatio-Doungtsop, van Ree, de Jong and van Kooyk.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 17 December 2020
                : 02 February 2021
                Page count
                Figures: 2, Tables: 1, Equations: 0, References: 136, Pages: 14, Words: 11647
                Categories
                Immunology
                Review

                Immunology
                dendritic cell,tolerance,immunotherapy,surface receptors,c-type lectins,siglecs,allergy,auto immune diseases

                Comments

                Comment on this article