10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Suppression of hepatic dysfunction in tenascin-X-deficient mice fed a high-fat diet

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Extracellular matrix glycoprotein tenascin-X (TNX) is the largest member of the tenascin family. In the present study, the contribution of TNX to liver dysfunction was investigated by administration of high-fat and high-cholesterol diet with high levels of phosphorus and calcium (HFCD) to wild-type (WT) and TNX-knockout (KO) mice. After 16 weeks of HFCD administration, the ratio of liver weight to body weight was approximately 22% higher in the HFCD-fed WT mice compared with the HFCD-fed TNX-KO mice, indicating hepatomegaly in HFCD-fed WT mice. Histological analyses with hematoxylin and eosin staining at 21 weeks revealed that hepatocyte hypertrophy in HFCD-fed TNX-KO mice was suppressed to 85% of that in HFCD-fed WT mice. By contrast, there was a 1.2-fold increase in lipid deposition in hepatocytes from HFCD-fed TNX-KO mice compared with HFCD-fed WT mice at 18 weeks, as demonstrated by Oil Red O staining. In addition, TNX-KO mice at 21 weeks and 27 weeks post-HFCD administration exhibited significant suppression of inflammatory cell infiltrate to 51 and 24% of that in WT mice, respectively. Immunofluorescence analysis for type I collagen and Elastica van Gieson staining demonstrated a clear hepatic fibrosis progression in HFCD-fed WT mice at 27 weeks, whereas hepatic fibrosis was undetected in HFCD-fed TNX-KO mice. The present findings indicated that TNX deficiency suppressed hepatic dysfunction induced by HFCD administration.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Mouse Models of Diet-Induced Nonalcoholic Steatohepatitis Reproduce the Heterogeneity of the Human Disease

          Background and aims Non-alcoholic steatohepatitis (NASH), the potentially progressive form of nonalcoholic fatty liver disease (NAFLD), is the pandemic liver disease of our time. Although there are several animal models of NASH, consensus regarding the optimal model is lacking. We aimed to compare features of NASH in the two most widely-used mouse models: methionine-choline deficient (MCD) diet and Western diet. Methods Mice were fed standard chow, MCD diet for 8 weeks, or Western diet (45% energy from fat, predominantly saturated fat, with 0.2% cholesterol, plus drinking water supplemented with fructose and glucose) for 16 weeks. Liver pathology and metabolic profile were compared. Results The metabolic profile associated with human NASH was better mimicked by Western diet. Although hepatic steatosis (i.e., triglyceride accumulation) was also more severe, liver non-esterified fatty acid content was lower than in the MCD diet group. NASH was also less severe and less reproducible in the Western diet model, as evidenced by less liver cell death/apoptosis, inflammation, ductular reaction, and fibrosis. Various mechanisms implicated in human NASH pathogenesis/progression were also less robust in the Western diet model, including oxidative stress, ER stress, autophagy deregulation, and hedgehog pathway activation. Conclusion Feeding mice a Western diet models metabolic perturbations that are common in humans with mild NASH, whereas administration of a MCD diet better models the pathobiological mechanisms that cause human NAFLD to progress to advanced NASH.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Ehlers-Danlos syndrome, a disorder with many faces.

            The Ehlers-Danlos syndromes (EDSs) comprise a heterogeneous group of diseases, characterized by fragility of the soft connective tissues and widespread manifestations in skin, ligaments, joints, blood vessels and internal organs. The clinical spectrum varies from mild skin and joint hyperlaxity to severe physical disability and life-threatening vascular complications. The current Villefranche classification recognizes six subtypes, most of which are linked to mutations in genes encoding fibrillar collagens or enzymes involved in post-translational modification of these proteins. Mutations in type V and type III collagen cause classic or vascular EDS respectively, while mutations involving the processing of type I collagen are involved in the kyphoscoliosis, arthrochalasis and dermatosparaxis type of EDS. Establishing the correct EDS subtype has important implications for genetic counseling and management and is supported by specific biochemical and molecular investigations. Over the last years, several new EDS variants have been characterized which call for a refinement of the Villefranche classification. Moreover, the study of these diseases has brought new insights into the molecular pathogenesis of EDS by implicating genetic defects in the biosynthesis of other extracellular matrix (ECM) molecules, such as proteoglycans and tenascin-X, or genetic defects in molecules involved in intracellular trafficking, secretion and assembly of ECM proteins. © 2012 John Wiley & Sons A/S.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Regulation of development and differentiation by the extracellular matrix.

              J Adams, F Watt (1993)
                Bookmark

                Author and article information

                Journal
                Mol Med Rep
                Mol Med Rep
                Molecular Medicine Reports
                D.A. Spandidos
                1791-2997
                1791-3004
                October 2017
                21 July 2017
                21 July 2017
                : 16
                : 4
                : 4061-4067
                Affiliations
                [1 ]Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane University, Izumo, Shimane 693-8501, Japan
                [2 ]Department of Biological Science, Shimane University, Matsue, Shimane 690-8504, Japan
                [3 ]Department of Experimental Animals, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane University, Izumo, Shimane 693-8501, Japan
                Author notes
                Correspondence to: Professor Ken-Ichi Matsumoto, Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane University, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan, E-mail: matumoto@ 123456med.shimane-u.ac.jp
                Article
                mmr-16-04-4061
                10.3892/mmr.2017.7052
                5646988
                28731143
                18ff499f-4648-4b1a-aacf-cac24a469ef2
                Copyright: © Yamaguchi et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 18 May 2016
                : 13 June 2017
                Categories
                Articles

                extracellular matrix,tenascin-x,liver dysfunction,high-fat and cholesterol diet,knockout mice

                Comments

                Comment on this article