18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The life cycle of SARS coronavirus in Vero E6 cells†

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aim of the study was to establish the life cycle of severe acute respiratory syndrome‐associated coronavirus (SARS CoV) in host cells and determine the pathogenesis of SARS. Vero E6 cells (African green monkey kidney cells) were inoculated with SARS coronavirus for 3, 7, 24, 48, and 72 hr, respectively, and were observed under electron microscope. It was found that the SARS coronavirus entered the cells through membrane fusion instead of endocytosis, and then the nucleocapsids assembled in the RER and matured by budding into the smooth vesicles, which were derived from the Golgi apparatus. The smooth vesicles fused with the cell membrane, and the mature particles were released. A special phenomenon was that some virus‐like particles appeared in the nucleus. We propose a scheme of the life cycle of SARS coronavirus and discuss the mechanism of its replication in Vero E6 cells. J. Med. Virol. 73:332–337, 2004. © 2004 Wiley‐Liss, Inc.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of a Novel Coronavirus in Patients with Severe Acute Respiratory Syndrome

          The severe acute respiratory syndrome (SARS) has recently been identified as a new clinical entity. SARS is thought to be caused by an unknown infectious agent. Clinical specimens from patients with SARS were searched for unknown viruses with the use of cell cultures and molecular techniques. A novel coronavirus was identified in patients with SARS. The virus was isolated in cell culture, and a sequence 300 nucleotides in length was obtained by a polymerase-chain-reaction (PCR)-based random-amplification procedure. Genetic characterization indicated that the virus is only distantly related to known coronaviruses (identical in 50 to 60 percent of the nucleotide sequence). On the basis of the obtained sequence, conventional and real-time PCR assays for specific and sensitive detection of the novel virus were established. Virus was detected in a variety of clinical specimens from patients with SARS but not in controls. High concentrations of viral RNA of up to 100 million molecules per milliliter were found in sputum. Viral RNA was also detected at extremely low concentrations in plasma during the acute phase and in feces during the late convalescent phase. Infected patients showed seroconversion on the Vero cells in which the virus was isolated. The novel coronavirus might have a role in causing SARS. Copyright 2003 Massachusetts Medical Society
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A novel coronavirus associated with severe acute respiratory syndrome.

            A worldwide outbreak of severe acute respiratory syndrome (SARS) has been associated with exposures originating from a single ill health care worker from Guangdong Province, China. We conducted studies to identify the etiologic agent of this outbreak. We received clinical specimens from patients in seven countries and tested them, using virus-isolation techniques, electron-microscopical and histologic studies, and molecular and serologic assays, in an attempt to identify a wide range of potential pathogens. None of the previously described respiratory pathogens were consistently identified. However, a novel coronavirus was isolated from patients who met the case definition of SARS. Cytopathological features were noted in Vero E6 cells inoculated with a throat-swab specimen. Electron-microscopical examination revealed ultrastructural features characteristic of coronaviruses. Immunohistochemical and immunofluorescence staining revealed reactivity with group I coronavirus polyclonal antibodies. Consensus coronavirus primers designed to amplify a fragment of the polymerase gene by reverse transcription-polymerase chain reaction (RT-PCR) were used to obtain a sequence that clearly identified the isolate as a unique coronavirus only distantly related to previously sequenced coronaviruses. With specific diagnostic RT-PCR primers we identified several identical nucleotide sequences in 12 patients from several locations, a finding consistent with a point-source outbreak. Indirect fluorescence antibody tests and enzyme-linked immunosorbent assays made with the new isolate have been used to demonstrate a virus-specific serologic response. This virus may never before have circulated in the U.S. population. A novel coronavirus is associated with this outbreak, and the evidence indicates that this virus has an etiologic role in SARS. Because of the death of Dr. Carlo Urbani, we propose that our first isolate be named the Urbani strain of SARS-associated coronavirus. Copyright 2003 Massachusetts Medical Society
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Characterization of a novel coronavirus associated with severe acute respiratory syndrome.

              P Rota (2003)
              In March 2003, a novel coronavirus (SARS-CoV) was discovered in association with cases of severe acute respiratory syndrome (SARS). The sequence of the complete genome of SARS-CoV was determined, and the initial characterization of the viral genome is presented in this report. The genome of SARS-CoV is 29,727 nucleotides in length and has 11 open reading frames, and its genome organization is similar to that of other coronaviruses. Phylogenetic analyses and sequence comparisons showed that SARS-CoV is not closely related to any of the previously characterized coronaviruses.
                Bookmark

                Author and article information

                Contributors
                Ls28@zsu.edu.cn
                Journal
                J Med Virol
                J. Med. Virol
                10.1002/(ISSN)1096-9071
                JMV
                Journal of Medical Virology
                Wiley Subscription Services, Inc., A Wiley Company (Hoboken )
                0146-6615
                1096-9071
                24 May 2004
                July 2004
                : 73
                : 3 ( doiID: 10.1002/jmv.v73:3 )
                : 332-337
                Affiliations
                [ 1 ]State Key Lab for Biocontrol, Zhongshan University, Guangzhou, China
                [ 2 ]Center for Disease Control and Prevention of Guangdong Province, Guangzhou, China
                Author notes
                [*] [* ]Division of Structural Biology, State Key Laboratory for Biocontrol, Zhongshan University, 135 Xingang West Road, Guangzhou 510275, China.===
                Article
                JMV20095
                10.1002/jmv.20095
                7166737
                15170625
                190bf8b2-98d9-4a67-9b9d-804a17ced305
                Copyright © 2004 Wiley‐Liss, Inc.

                This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.

                History
                : 25 February 2004
                Page count
                Figures: 8, Tables: 0, References: 29, Pages: 6, Words: 961
                Funding
                Funded by: SARS Research Foundation of Guangdong Province
                Categories
                Research Article
                Article
                Custom metadata
                2.0
                July 2004
                Converter:WILEY_ML3GV2_TO_JATSPMC version:5.8.0 mode:remove_FC converted:15.04.2020

                Microbiology & Virology
                sars coronavirus,life cycle,electron microscopy
                Microbiology & Virology
                sars coronavirus, life cycle, electron microscopy

                Comments

                Comment on this article