2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The role of selection in the evolution of blindness in cave fish

      1

      Biological Journal of the Linnean Society

      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The forces driving regression of biologically functionless traits remain disputed. There is ongoing debate regarding whether selection, as opposed to disuse and neutral mutations, is involved in this process. Cave species are of particular relevance for study in this regard because in continuous darkness all traits that depend on information from light, such as eyes, dark pigmentation and certain behaviours, abruptly lose their function. Recently, strong selection driving reduction has again been proposed, which relied on modelling analyses based on assumptions such as immigration of surface alleles into the cave forms or no fitness difference existing between Astyanax surface and cave fish. The validity of these assumptions, often applied to reject neutral processes in functionless traits, is questioned in this review. Morphological variation in a trait resulting from genetic variability is typical of biologically functionless traits and is particularly notable in phylogenetically young cave species. It is the most evident indicator of loss of selection, which normally enforces uniformity to guarantee optimal functionality. Phenotypic and genotypic variability in Astyanax cave fish eyes does not derive from genetic introgression by the surface form, but from regressive mutations not being eliminated by selection. This matches well with the principles of Kimura’s neutral theory of molecular evolution.

          Related collections

          Most cited references 87

          • Record: found
          • Abstract: not found
          • Article: not found

          Glacial North Atlantic: Sea-surface conditions reconstructed by GLAMAP 2000

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ancient DNA reveals elephant birds and kiwi are sister taxa and clarifies ratite bird evolution.

            The evolution of the ratite birds has been widely attributed to vicariant speciation, driven by the Cretaceous breakup of the supercontinent Gondwana. The early isolation of Africa and Madagascar implies that the ostrich and extinct Madagascan elephant birds (Aepyornithidae) should be the oldest ratite lineages. We sequenced the mitochondrial genomes of two elephant birds and performed phylogenetic analyses, which revealed that these birds are the closest relatives of the New Zealand kiwi and are distant from the basal ratite lineage of ostriches. This unexpected result strongly contradicts continental vicariance and instead supports flighted dispersal in all major ratite lineages. We suggest that convergence toward gigantism and flightlessness was facilitated by early Tertiary expansion into the diurnal herbivory niche after the extinction of the dinosaurs. Copyright © 2014, American Association for the Advancement of Science.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regressive evolution in the Mexican cave tetra, Astyanax mexicanus.

              The evolutionary forces driving the reduction of eyes and pigmentation in cave-adapted animals are unknown; Darwin famously questioned the role of natural selection in eye loss in cave fishes: "As it is difficult to imagine that eyes, although useless, could be in any way injurious to animals living in darkness, I attribute their loss wholly to disuse"[1]. We studied the genetics of eye and pigmentation regression in the Mexican cave tetra, Astyanax mexicanus, by mapping and quantitative trait loci (QTL) analysis. We also mapped QTL for the putatively constructive traits of jaw size, tooth number, and numbers of taste buds. The data suggest that eyes and pigmentation regressed through different mechanisms. Cave alleles at every eye or lens QTL we detected caused size reductions, consistent with evolution by natural selection but not with drift. QTL polarities for melanophore number were mixed, however, consistent with genetic drift. Arguments against a role for selection in the regression of cave-fish eyes cited the insignificant cost of their development [2, 3], but we argue that the energetic cost of their maintenance is sufficiently high for eyes to be detrimental in the cave environment. Regression can be caused either by selection or drift.
                Bookmark

                Author and article information

                Journal
                Biological Journal of the Linnean Society
                Oxford University Press (OUP)
                0024-4066
                1095-8312
                July 2020
                June 26 2020
                May 24 2020
                July 2020
                June 26 2020
                May 24 2020
                : 130
                : 3
                : 421-432
                Affiliations
                [1 ]CeNak/Zoological Museum Hamburg, University of Hamburg, Martin-Luther-King-Platz, Hamburg, Germany
                Article
                10.1093/biolinnean/blaa054
                © 2020

                Comments

                Comment on this article