54
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      New and improved strategies for the treatment of gout

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Western world appears to be in the midst of the third great gout epidemic of all time. In this century, gout is increasing in prevalence despite an increased understanding of its risk factors and pathophysiology, and the availability of reasonably effective treatment. The main cultural factors responsible for this appear to be diet, obesity, ethanol use and medications. Excess fructose consumption is a newly recognized modifiable risk factor. The debate has been renewed concerning hyperuricemia as an independent risk factor for renal insufficiency and cardiovascular disease. Prevention is still rooted in lifestyle choices. Existing treatments have proven to be unsatisfactory in many patients with comorbidities. New treatments are available today and on the horizon for tomorrow, which offer a better quality of life for gout sufferers. These include febuxostat, a nonpurine inhibitor of xanthine oxidase with a potentially better combination of efficacy and safety than allopurinol, and investigational inhibitors of URAT-1, an anion exchanger in the proximal tubule that is critical for uric acid homeostasis. New abortive treatments include interleukin-1 antagonists that can cut short the acute attack in 1 to 2 days in persons who cannot take nonsteroidal anti-inflammatory drugs, colchicine or corticosteroids. Lastly, newer formulations of uricase have the ability to dissolve destructive tophi over weeks or months in patients who cannot use currently available hypouricemic agents. Diagnostically, ultrasound and magnetic resonance imaging offer advanced ways to diagnose gout noninvasively, and just as importantly, a way to follow the progress of tophus dissolution. The close association of hyperuricemia with metabolic syndrome, hypertension and renal insufficiency ensures that nephrologists will see increasing numbers of gout-afflicted patients.

          Related collections

          Most cited references214

          • Record: found
          • Abstract: found
          • Article: not found

          The inflammasomes: guardians of the body.

          The innate immune system relies on its capacity to rapidly detect invading pathogenic microbes as foreign and to eliminate them. The discovery of Toll-like receptors (TLRs) provided a class of membrane receptors that sense extracellular microbes and trigger antipathogen signaling cascades. More recently, intracellular microbial sensors have been identified, including NOD-like receptors (NLRs). Some of the NLRs also sense nonmicrobial danger signals and form large cytoplasmic complexes called inflammasomes that link the sensing of microbial products and metabolic stress to the proteolytic activation of the proinflammatory cytokines IL-1beta and IL-18. The NALP3 inflammasome has been associated with several autoinflammatory conditions including gout. Likewise, the NALP3 inflammasome is a crucial element in the adjuvant effect of aluminum and can direct a humoral adaptive immune response. In this review, we discuss the role of NLRs, and in particular the inflammasomes, in the recognition of microbial and danger components and the role they play in health and disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular identification of a renal urate anion exchanger that regulates blood urate levels.

            Urate, a naturally occurring product of purine metabolism, is a scavenger of biological oxidants implicated in numerous disease processes, as demonstrated by its capacity of neuroprotection. It is present at higher levels in human blood (200 500 microM) than in other mammals, because humans have an effective renal urate reabsorption system, despite their evolutionary loss of hepatic uricase by mutational silencing. The molecular basis for urate handling in the human kidney remains unclear because of difficulties in understanding diverse urate transport systems and species differences. Here we identify the long-hypothesized urate transporter in the human kidney (URAT1, encoded by SLC22A12), a urate anion exchanger regulating blood urate levels and targeted by uricosuric and antiuricosuric agents (which affect excretion of uric acid). Moreover, we provide evidence that patients with idiopathic renal hypouricaemia (lack of blood uric acid) have defects in SLC22A12. Identification of URAT1 should provide insights into the nature of urate homeostasis, as well as lead to the development of better agents against hyperuricaemia, a disadvantage concomitant with human evolution.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Febuxostat compared with allopurinol in patients with hyperuricemia and gout.

              Febuxostat, a novel nonpurine selective inhibitor of xanthine oxidase, is a potential alternative to allopurinol for patients with hyperuricemia and gout. We randomly assigned 762 patients with gout and with serum urate concentrations of at least 8.0 mg per deciliter (480 micromol per liter) to receive either febuxostat (80 mg or 120 mg) or allopurinol (300 mg) once daily for 52 weeks; 760 received the study drug. Prophylaxis against gout flares with naproxen or colchicine was provided during weeks 1 through 8. The primary end point was a serum urate concentration of less than 6.0 mg per deciliter (360 micromol per liter) at the last three monthly measurements. The secondary end points included reduction in the incidence of gout flares and in tophus area. The primary end point was reached in 53 percent of patients receiving 80 mg of febuxostat, 62 percent of those receiving 120 mg of febuxostat, and 21 percent of those receiving allopurinol (P<0.001 for the comparison of each febuxostat group with the allopurinol group). Although the incidence of gout flares diminished with continued treatment, the overall incidence during weeks 9 through 52 was similar in all groups: 64 percent of patients receiving 80 mg of febuxostat, 70 percent of those receiving 120 mg of febuxostat, and 64 percent of those receiving allopurinol (P=0.99 for 80 mg of febuxostat vs. allopurinol; P=0.23 for 120 mg of febuxostat vs. allopurinol). The median reduction in tophus area was 83 percent in patients receiving 80 mg of febuxostat and 66 percent in those receiving 120 mg of febuxostat, as compared with 50 percent in those receiving allopurinol (P=0.08 for 80 mg of febuxostat vs. allopurinol; P=0.16 for 120 mg of febuxostat vs. allopurinol). More patients in the high-dose febuxostat group than in the allopurinol group (P=0.003) or the low-dose febuxostat group discontinued the study. Four of the 507 patients in the two febuxostat groups (0.8 percent) and none of the 253 patients in the allopurinol group died; all deaths were from causes that the investigators (while still blinded to treatment) judged to be unrelated to the study drugs (P=0.31 for the comparison between the combined febuxostat groups and the allopurinol group). Febuxostat, at a daily dose of 80 mg or 120 mg, was more effective than allopurinol at the commonly used fixed daily dose of 300 mg in lowering serum urate. Similar reductions in gout flares and tophus area occurred in all treatment groups. Copyright 2005 Massachusetts Medical Society.
                Bookmark

                Author and article information

                Journal
                Int J Nephrol Renovasc Dis
                International Journal of Nephrology and Renovascular Disease
                Dove Medical Press
                1178-7058
                2010
                24 November 2010
                : 3
                : 145-166
                Affiliations
                Division of Rheumatology, Cooper University Hospital, UMDNJ – Robert Wood Johnson Medical School at Camden, Camden, NJ, USA
                Author notes
                Correspondence: Gerald F Falasca, Division of Rheumatology, 900 Centennial Blvd., Suite 201, Voorhees, NJ 08043, USA, Tel +1 856-325-6770, Fax +1 856-673-4510, Email falasca-gerald@ 123456cooperhealth.edu
                Article
                ijnrd-3-145
                10.2147/IJNRD.S6048
                3108771
                21694941
                191ebfe6-d5c7-4d6a-a426-b2aa66ef092d
                © 2010 Dubchak and Falasca, publisher and licensee Dove Medical Press Ltd.

                This is an Open Access article which permits unrestricted noncommercial use, provided the original work is properly cited.

                History
                : 22 November 2010
                Categories
                Review

                Nephrology
                allopurinol,colchicine,tophi,metabolic syndrome,hyperuricemia,febuxostat
                Nephrology
                allopurinol, colchicine, tophi, metabolic syndrome, hyperuricemia, febuxostat

                Comments

                Comment on this article