11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Beyond Ruxolitinib: Fedratinib and Other Emergent Treatment Options for Myelofibrosis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Myelofibrosis (MF) is a myeloproliferative neoplasm characterized by clonal proliferation of differentiated myeloid cells leading to bone marrow fibrosis, cytopenias and extramedullary hematopoiesis. In late 2019, the FDA approved the highly selective JAK2 inhibitor, fedratinib, for intermediate-2 or high-risk primary or secondary MF, making it the second drug approved for MF after ruxolitinib, a JAK1/2 inhibitor, which was approved for MF in 2011. The approval of fedratinib was based on phase II trials and the phase III JAKARTA trial, in which the drug significantly reduced splenomegaly and symptom burden compared to placebo, including some patients previously treated with ruxolitinib. The main side effects of fedratinib include anemia, gastrointestinal symptoms, and elevations in liver transaminases. Fedratinib also has ablack box warning for encephalopathy, although this occurred only in about 1% of the treated patients, most of which were ultimately felt not to represent Wernicke’s encephalopathy. Nonetheless, monitoring of thiamine levels and supplementation are recommended especially in high-risk patients. This concern has led to a prolonged clinical hold and delayed the drug approval by several years during which the drug exchanged manufacturers, highlighting the need for meticulous investigation and adjudication of serious, but rare, adverse events in drug development that could end up preventing drugs with favorable risk/benefit ratio from being approved. In this review, we discuss the pharmacokinetic data and efficacy, as well as the toxicity results of clinical trials of fedratinib. We also review ongoing trials of JAK inhibitors in MF and explore future treatment options for MF patients who are refractory to ruxolitinib.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis.

          The V617F mutation, which causes the substitution of phenylalanine for valine at position 617 of the Janus kinase (JAK) 2 gene (JAK2), is often present in patients with polycythemia vera, essential thrombocythemia, and idiopathic myelofibrosis. However, the molecular basis of these myeloproliferative disorders in patients without the V617F mutation is unclear. We searched for new mutations in members of the JAK and signal transducer and activator of transcription (STAT) gene families in patients with V617F-negative polycythemia vera or idiopathic erythrocytosis. The mutations were characterized biochemically and in a murine model of bone marrow transplantation. We identified four somatic gain-of-function mutations affecting JAK2 exon 12 in 10 V617F-negative patients. Those with a JAK2 exon 12 mutation presented with an isolated erythrocytosis and distinctive bone marrow morphology, and several also had reduced serum erythropoietin levels. Erythroid colonies could be grown from their blood samples in the absence of exogenous erythropoietin. All such erythroid colonies were heterozygous for the mutation, whereas colonies homozygous for the mutation occur in most patients with V617F-positive polycythemia vera. BaF3 cells expressing the murine erythropoietin receptor and also carrying exon 12 mutations could proliferate without added interleukin-3. They also exhibited increased phosphorylation of JAK2 and extracellular regulated kinase 1 and 2, as compared with cells transduced by wild-type JAK2 or V617F JAK2. Three of the exon 12 mutations included a substitution of leucine for lysine at position 539 of JAK2. This mutation resulted in a myeloproliferative phenotype, including erythrocytosis, in a murine model of retroviral bone marrow transplantation. JAK2 exon 12 mutations define a distinctive myeloproliferative syndrome that affects patients who currently receive a diagnosis of polycythemia vera or idiopathic erythrocytosis. 2007 Massachusetts Medical Society
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis.

            Janus kinase 2 (JAK2) mutations define polycythemia vera (PV). Calreticulin (CALR) and myeloproliferative leukemia virus oncogene (MPL) mutations are specific to JAK2-unmutated essential thrombocythemia (ET) and primary myelofibrosis (PMF). We examined the effect of these mutations on long-term disease outcome. One thousand five hundred eighty-one patients from the Mayo Clinic (n = 826) and Italy (n = 755) were studied. Fifty-eight percent of Mayo patients were followed until death; median survivals were 19.8 years in ET (n = 292), 13.5 PV (n = 267; hazard ratio [HR], 1.8; 95% confidence interval [CI], 1.4-2.2), and 5.9 PMF (n = 267; HR, 4.5; 95% CI, 3.5-5.7). The survival advantage of ET over PV was not affected by JAK2/CALR/MPL mutational status. Survival in ET was inferior to the age- and sex-matched US population (P < .001). In PMF (n = 428), but not in ET (n = 576), survival and blast transformation (BT) were significantly affected by mutational status; outcome was best in CALR-mutated and worst in triple-negative patients: median survival, 16 vs 2.3 years (HR, 5.1; 95% CI, 3.2-8.0) and BT, 6.5% vs 25% (HR, 7.6; 95% CI, 2.8-20.2), respectively. We conclude that life expectancy in morphologically defined ET is significantly reduced but remains superior to that of PV, regardless of mutational status. In PMF, JAK2/CALR/MPL mutational status is prognostically informative.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms

              The genetic landscape of classical myeloproliferative neoplasm (MPN) is in large part elucidated. The MPN-restricted driver mutations, including those in JAK2, calreticulin (CALR), and myeloproliferative leukemia virus (MPL), abnormally activate the cytokine receptor/JAK2 pathway and their downstream effectors, more particularly the STATs. The most frequent mutation, JAK2V617F, activates the 3 main myeloid cytokine receptors (erythropoietin receptor, granulocyte colony-stimulating factor receptor, and MPL) whereas CALR or MPL mutants are restricted to MPL activation. This explains why JAK2V617F is associated with polycythemia vera, essential thrombocythemia (ET), and primary myelofibrosis (PMF) whereas CALR and MPL mutants are found in ET and PMF. Other mutations in genes involved in epigenetic regulation, splicing, and signaling cooperate with the 3 MPN drivers and play a key role in the PMF pathogenesis. Mutations in epigenetic regulators TET2 and DNMT3A are involved in disease initiation and may precede the acquisition of JAK2V617F. Other mutations in epigenetic regulators such as EZH2 and ASXL1 also play a role in disease initiation and disease progression. Mutations in the splicing machinery are predominantly found in PMF and are implicated in the development of anemia or pancytopenia. Both heterogeneity of classical MPNs and prognosis are determined by a specific genomic landscape, that is, type of MPN driver mutations, association with other mutations, and their order of acquisition. However, factors other than somatic mutations play an important role in disease initiation as well as disease progression such as germ line predisposition, inflammation, and aging. Delineation of these environmental factors will be important to better understand the precise pathogenesis of MPN.
                Bookmark

                Author and article information

                Journal
                Cancer Manag Res
                Cancer Manag Res
                CMAR
                cancmanres
                Cancer Management and Research
                Dove
                1179-1322
                24 December 2019
                2019
                : 11
                : 10777-10790
                Affiliations
                [1 ]Department of Internal Medicine, Section of Hematology, Yale School of Medicine , New Haven, CT, USA
                [2 ]Department of Pharmacy, Yale New Haven Hospital , New Haven, CT, USA
                [3 ]Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale University , New Haven, CT, USA
                Author notes
                Correspondence: Amer M Zeidan Section of Hematology, Department of Internal Medicine, Yale University , 37 College Street, PO Box 208028, New Haven, CT06520-8028, USATel +1 203-737-7103Fax +1 203-785-7232 Email amer.zeidan@yale.edu
                Author information
                http://orcid.org/0000-0003-3352-0902
                http://orcid.org/0000-0002-1556-1025
                http://orcid.org/0000-0002-7342-5785
                Article
                212559
                10.2147/CMAR.S212559
                6935287
                31920387
                1932e9fc-d7f9-48f0-9184-f33786be94a7
                © 2019 Bewersdorf et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 12 November 2019
                : 13 December 2019
                Page count
                Tables: 2, References: 89, Pages: 14
                Categories
                Review

                Oncology & Radiotherapy
                fedratinib,ruxolitinib,myelofibrosis,mf,jak2
                Oncology & Radiotherapy
                fedratinib, ruxolitinib, myelofibrosis, mf, jak2

                Comments

                Comment on this article