18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dicer is a key enzyme involved in the maturation of microRNAS (miRNAs). miRNAs have been shown to be regulators of gene expression participating in the control of a wide range of physiological pathways. To assess the role of Dicer and consequently the importance of miRNAs in the biology and functions of human endothelial cells (EC) during angiogenesis, we globally reduced miRNAs in ECs by specific silencing Dicer using siRNA and examined the effects on EC phenotypes in vitro. The knockdown of Dicer in ECs altered the expression (mRNA and/or protein) of several key regulators of endothelial biology and angiogenesis, such as TEK/Tie-2, KDR/VEGFR2, Tie-1, endothelial nitric oxide synthase and IL-8. Although, Dicer knockdown increased activation of the endothelial nitric oxide synthase pathway it reduced proliferation and cord formation of EC in vitro. The miRNA expression profile of EC revealed 25 highly expressed miRNAs in human EC and using miRNA mimicry, miR-222/221 regulates endothelial nitric oxide synthase protein levels after Dicer silencing. Collectively, these results indicate that maintenance and regulation of endogenous miRNA levels via Dicer mediated processing is critical for EC gene expression and functions in vitro.

          Related collections

          Author and article information

          Journal
          Circ Res
          Circulation research
          Ovid Technologies (Wolters Kluwer Health)
          1524-4571
          0009-7330
          Apr 27 2007
          : 100
          : 8
          Affiliations
          [1 ] Department of Pathology, Yale University School of Medicine, New Haven, Conn 06536, USA.
          Article
          01.RES.0000265065.26744.17
          10.1161/01.RES.0000265065.26744.17
          17379831
          1933da99-36f0-4323-99ee-35fd01bbe4f1
          History

          Comments

          Comment on this article