41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      BDNF Regulates the Expression and Distribution of Vesicular Glutamate Transporters in Cultured Hippocampal Neurons

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          BDNF is a pro-survival protein involved in neuronal development and synaptic plasticity. BDNF strengthens excitatory synapses and contributes to LTP, presynaptically, through enhancement of glutamate release, and postsynaptically, via phosphorylation of neurotransmitter receptors, modulation of receptor traffic and activation of the translation machinery. We examined whether BDNF upregulated vesicular glutamate receptor (VGLUT) 1 and 2 expression, which would partly account for the increased glutamate release in LTP. Cultured rat hippocampal neurons were incubated with 100 ng/ml BDNF, for different periods of time, and VGLUT gene and protein expression were assessed by real-time PCR and immunoblotting, respectively. At DIV7, exogenous application of BDNF rapidly increased VGLUT2 mRNA and protein levels, in a dose-dependent manner. VGLUT1 expression also increased but only transiently. However, at DIV14, BDNF stably increased VGLUT1 expression, whilst VGLUT2 levels remained low. Transcription inhibition with actinomycin-D or α-amanitine, and translation inhibition with emetine or anisomycin, fully blocked BDNF-induced VGLUT upregulation. Fluorescence microscopy imaging showed that BDNF stimulation upregulates the number, integrated density and intensity of VGLUT1 and VGLUT2 puncta in neurites of cultured hippocampal neurons (DIV7), indicating that the neurotrophin also affects the subcellular distribution of the transporter in developing neurons. Increased VGLUT1 somatic signals were also found 3 h after stimulation with BDNF, further suggesting an increased de novo transcription and translation. BDNF regulation of VGLUT expression was specifically mediated by BDNF, as no effect was found upon application of IGF-1 or bFGF, which activate other receptor tyrosine kinases. Moreover, inhibition of TrkB receptors with K252a and PLCγ signaling with U-73122 precluded BDNF-induced VGLUT upregulation. Hippocampal neurons express both isoforms during embryonic and neonatal development in contrast to adult tissue expressing only VGLUT1. These results suggest that BDNF regulates VGLUT expression during development and its effect on VGLUT1 may contribute to enhance glutamate release in LTP.

          Related collections

          Most cited references81

          • Record: found
          • Abstract: found
          • Article: not found

          Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms.

          A mechanism by which the Ras-mitogen-activated protein kinase (MAPK) signaling pathway mediates growth factor-dependent cell survival was characterized. The MAPK-activated kinases, the Rsks, catalyzed the phosphorylation of the pro-apoptotic protein BAD at serine 112 both in vitro and in vivo. The Rsk-induced phosphorylation of BAD at serine 112 suppressed BAD-mediated apoptosis in neurons. Rsks also are known to phosphorylate the transcription factor CREB (cAMP response element-binding protein) at serine 133. Activated CREB promoted cell survival, and inhibition of CREB phosphorylation at serine 133 triggered apoptosis. These findings suggest that the MAPK signaling pathway promotes cell survival by a dual mechanism comprising the posttranslational modification and inactivation of a component of the cell death machinery and the increased transcription of pro-survival genes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A Simple Role for BDNF in Learning and Memory?

            Since its discovery almost three decades ago, the secreted neurotrophin brain-derived neurotrophic factor (BDNF) has been firmly implicated in the differentiation and survival of neurons of the CNS. More recently, BDNF has also emerged as an important regulator of synaptogenesis and synaptic plasticity mechanisms underlying learning and memory in the adult CNS. In this review we will discuss our knowledge about the multiple intracellular signalling pathways activated by BDNF, and the role of this neurotrophin in long-term synaptic plasticity and memory formation as well as in synaptogenesis. We will show that maturation of BDNF, its cellular localization and its ability to regulate both excitatory and inhibitory synapses in the CNS may result in conflicting alterations in synaptic plasticity and memory formation. Lack of a precise knowledge about the mechanisms by which BDNF influences higher cognitive functions and complex behaviours may constitute a severe limitation in the possibility to devise BDNF-based therapeutics for human disorders of the CNS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Translational control by MAPK signaling in long-term synaptic plasticity and memory.

              Enduring forms of synaptic plasticity and memory require new protein synthesis, but little is known about the underlying regulatory mechanisms. Here, we investigate the role of MAPK signaling in these processes. Conditional expression of a dominant-negative form of MEK1 in the postnatal murine forebrain inhibited ERK activation and caused selective deficits in hippocampal memory retention and the translation-dependent, transcription-independent phase of hippocampal L-LTP. In hippocampal neurons, ERK inhibition blocked neuronal activity-induced translation as well as phosphorylation of the translation factors eIF4E, 4EBP1, and ribosomal protein S6. Correspondingly, protein synthesis and translation factor phosphorylation induced in control hippocampal slices by L-LTP-generating tetanization were significantly reduced in mutant slices. Translation factor phosphorylation induced in the control hippocampus by memory formation was similarly diminished in the mutant hippocampus. These results suggest a crucial role for translational control by MAPK signaling in long-lasting forms of synaptic plasticity and memory.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                11 January 2013
                : 8
                : 1
                : e53793
                Affiliations
                [1 ]CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
                [2 ]Department of Biological and Environmental Science, University of Sannio, Benevento, Italy
                [3 ]Department of Life Sciences, University of Coimbra, Coimbra, Portugal
                Baylor College of Medicine, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: CVM MM MC DC CBD. Performed the experiments: CVM MM MC DC CGS. Analyzed the data: CVM MM MC DC CBD. Wrote the paper: CVM.

                Article
                PONE-D-12-18016
                10.1371/journal.pone.0053793
                3543267
                23326507
                194237f4-d6e2-49f9-9706-d4b13623a33d
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 5 June 2012
                : 5 December 2012
                Page count
                Pages: 17
                Funding
                FCT (Fundação para a Ciência e a Tecnologia) and FEDER (Fundo Europeu de Desenvolvimento Regional, Portugal) (grants PTDC/SAU-NMC/120144/2010 and PTDC/SAU-NEU/104297/2008) funded this study. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Biochemistry
                Proteins
                Transmembrane Transport Proteins
                Molecular Cell Biology
                Cellular Types
                Neurons
                Signal Transduction
                Signaling in Cellular Processes
                Neuroscience
                Developmental Neuroscience
                Synaptic Plasticity
                Molecular Neuroscience
                Signaling Pathways
                Neurophysiology
                Synapses
                Neurotransmitters

                Uncategorized
                Uncategorized

                Comments

                Comment on this article