30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Discovery of new muscarinic acetylcholine receptor antagonists from Scopolia tangutica

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Scopolia tangutica (S. tangutica) is a traditional Chinese medicinal plant used for antispasmodics, anesthesia, analgesia and sedation. Its pharmacological activities are mostly associated with the antagonistic activity at muscarinic acetylcholine receptors (mAchRs) of several known alkaloids such as atropine and scopolamine. With our recent identification of four hydroxycinnamic acid amides from S. tangutica, we hypothesized that this plant may contain previously unidentified alkaloids that may also contribute to its in vivo effect. Herein, we used a bioassay-guided multi-dimension separation strategy to discover novel mAchR antagonists from S. tangutica. The core of this approach is to use label-free cell phenotypic assay to first identify active fractions, and then to guide purification of active ligands. Besides four tropanes and six cinnamic acid amides that have been previously isolated from S. tangutica, we recently identified two new tropanes, one new cinnamic acid amide, and nine other compounds. Six tropane compounds purified from S. tangutica for the first time were confirmed to be competitive antagonists of muscarinic receptor 3 (M3), including the two new ones 8 and 12 with IC 50 values of 1.97 μM and 4.47 μM, respectively. Furthermore, the cinnamic acid amide 17 displayed 15-fold selectivity for M1 over M3 receptors. These findings will be useful in designing lead compounds for mAchRs and elucidating mechanisms of action of S. tangutica.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Interplay between NS3 protease and human La protein regulates translation-replication switch of Hepatitis C virus

          HCV NS3 protein plays a central role in viral polyprotein processing and RNA replication. We demonstrate that the NS3 protease (NS3pro) domain alone can specifically bind to HCV-IRES RNA, predominantly in the SLIV region. The cleavage activity of the NS3 protease domain is reduced upon HCV-RNA binding. More importantly, NS3pro binding to the SLIV hinders the interaction of La protein, a cellular IRES-trans acting factor required for HCV IRES-mediated translation, resulting in inhibition of HCV-IRES activity. Although overexpression of both NS3pro as well as the full length NS3 protein decreased the level of HCV IRES mediated translation, replication of HCV replicon RNA was enhanced significantly. These observations suggest that the NS3pro binding to HCV IRES reduces translation in favor of RNA replication. The competition between the host factor (La) and the viral protein (NS3) for binding to HCV IRES might regulate the molecular switch from translation to replication of HCV.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A review of the differences and similarities between generic drugs and their originator counterparts, including economic benefits associated with usage of generic medicines, using Ireland as a case study

            Generic medicines are those where patent protection has expired, and which may be produced by manufacturers other than the innovator company. Use of generic medicines has been increasing in recent years, primarily as a cost saving measure in healthcare provision. Generic medicines are typically 20 to 90% cheaper than originator equivalents. Our objective is to provide a high-level description of what generic medicines are and how they differ, at a regulatory and legislative level, from originator medicines. We describe the current and historical regulation of medicines in the world’s two main pharmaceutical markets, in addition to the similarities, as well as the differences, between generics and their originator equivalents including the reasons for the cost differences seen between originator and generic medicines. Ireland is currently poised to introduce generic substitution and reference pricing. This article refers to this situation as an exemplar of a national system on the cusp of significant health policy change, and specifically details Ireland’s history with usage of generic medicines and how the proposed changes could affect healthcare provision.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              High levels of jasmonic acid antagonize the biosynthesis of gibberellins and inhibit the growth of Nicotiana attenuata stems.

              Hormones play pivotal roles in regulating plant development, growth, and stress responses, and cross-talk among different hormones fine-tunes various aspects of plant physiology. Jasmonic acid (JA) is important for plant defense against herbivores and necrotic fungi and also regulates flower development; in addition, Arabidopsis mutants over-producing JA usually have stunted stems and wound-induced jasmonates suppress Arabidopsis growth, suggesting that JA is also involved in stem elongation. Gibberellins (GAs) promote stem and leaf growth and modulate seed germination, flowering time, and the development of flowers, fruits, and seeds. However, little is known about the interaction between the JA and GA pathways. Two calcium-dependent protein kinases, CDPK4 and CDPK5, are important suppressors of JA accumulation in a wild tobacco species, Nicotiana attenuata. The stems of N. attenuata silenced in CDPK4 and CDPK5 (irCDPK4/5 plants) had dramatically increased levels of JA and exhibited stunted elongation and had very high contents of secondary metabolites. Genetic analysis indicated that the high JA levels in irCDPK4/5 stems accounted for the suppressed stem elongation and the accumulation of secondary metabolites. Supplementation of GA(3) to irCDPK4/5 plants largely restored normal stem growth to wild-type levels. Measures of GA levels indicated that over-accumulation of JA in irCDPK4/5 stems inhibited the biosynthesis of GAs. Finally, we show that JA antagonizes GA biosynthesis by strongly inhibiting the transcript accumulation of GA20ox and possibly GA13ox, the key genes in GA production, demonstrating that high JA levels antagonize GA biosynthesis in stems. © 2012 The Authors The Plant Journal © 2012 Blackwell Publishing Ltd.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                07 April 2017
                2017
                : 7
                : 46067
                Affiliations
                [1 ]Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian, China
                [2 ]University of Chinese Academy of Sciences , Beijing, China
                [3 ]Key Lab of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences , Xining 810008, China
                [4 ]Co-innovation Center of Neuroregeneration, Nantong University , Nantong, 226019, China
                Author notes
                Article
                srep46067
                10.1038/srep46067
                5384254
                28387362
                1948a993-862e-464e-9a7b-d3f4fd0131ba
                Copyright © 2017, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 16 September 2016
                : 08 March 2017
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article