64
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Long-range gap junctional signaling controls oncogene-mediated tumorigenesis in Xenopus laevis embryos

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In addition to the immediate microenvironment, long-range signaling may be an important component of cancer. Molecular-genetic analyses have implicated gap junctions—key mediators of cell-cell communication—in carcinogenesis. We recently showed that the resting voltage potential of distant cell groups is a key determinant of metastatic transformation and tumor induction. Here, we show in the Xenopus laevis model that gap junctional communication (GJC) is a modulator of the long-range bioelectric signaling that regulates tumor formation. Genetic disruption of GJC taking place within tumors, within remote host tissues, or between the host and tumors significantly lowers the incidence of tumors induced by KRAS mutations. The most pronounced suppression of tumor incidence was observed upon GJC disruption taking place farther away from oncogene-expressing cells, revealing a role for GJC in distant cells in the control of tumor growth. In contrast, enhanced GJC communication through the overexpression of wild-type connexin Cx26 increased tumor incidence. Our data confirm a role for GJC in tumorigenesis, and reveal that this effect is non-local. Based on these results and on published data on movement of ions through GJs, we present a quantitative model linking the GJC coupling and bioelectrical state of cells to the ability of oncogenes to initiate tumorigenesis. When integrated with data on endogenous bioelectric signaling during left-right patterning, the model predicts differential tumor incidence outcomes depending on the spatial configurations of gap junction paths relative to tumor location and major anatomical body axes. Testing these predictions, we found that the strongest influence of GJ modulation on tumor suppression by hyperpolarization occurred along the embryonic left-right axis. Together, these data reveal new, long-range aspects of cancer control by the host's physiological parameters.

          Related collections

          Most cited references115

          • Record: found
          • Abstract: found
          • Article: not found

          Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression.

          Tumors are like new organs and are made of multiple cell types and components. The tumor competes with the normal microenvironment to overcome antitumorigenic pressures. Before that battle is won, the tumor may exist within the organ unnoticed by the host, referred to as 'occult cancer'. We review how normal tissue homeostasis and architecture inhibit progression of cancer and how changes in the microenvironment can shift the balance of these signals to the procancerous state. We also include a discussion of how this information is being tailored for clinical use.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Connexins, connexons, and intercellular communication.

            Cells in tissues share ions, second messengers, and small metabolites through clusters of intercellular channels called gap junctions. This type of intercellular communication permits coordinated cellular activity. Intercellular channels are formed from two oligomeric integral membrane protein assemblies, called connexons, which span two adjacent cells' plasma membranes and join in a narrow, extracellular "gap." Connexons are formed from connexins, a highly related multigene family consisting of at least 13 members. Since the cloning of the first connexin in 1986, considerable progress has been made in our understanding of the complex molecular switches that control the formation and permeability of the intercellular channels. Analysis of the mechanisms of channel assembly has revealed the selectivity of inter-connexin interactions and uncovered novel characteristics of the channel permeability and gating behavior. Structure-function studies provide a molecular understanding of the significance of connexin diversity and demonstrate the unique regulation of connexins by tyrosine kinases and oncogenes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Voltage-gated sodium channel expression and potentiation of human breast cancer metastasis.

              Ion channel activity is involved in several basic cellular behaviors that are integral to metastasis (e.g., proliferation, motility, secretion, and invasion), although their contribution to cancer progression has largely been ignored. The purpose of this study was to investigate voltage-gated Na(+) channel (VGSC) expression and its possible role in human breast cancer. Functional VGSC expression was investigated in human breast cancer cell lines by patch clamp recording. The contribution of VGSC activity to directional motility, endocytosis, and invasion was evaluated by in vitro assays. Subsequent identification of the VGSC alpha-subunit(s) expressed in vitro was achieved using reverse transcription-PCR, immunocytochemistry, and Western blot techniques and used to investigate VGSCalpha expression and its association with metastasis in vivo. VGSC expression was significantly up-regulated in metastatic human breast cancer cells and tissues, and VGSC activity potentiated cellular directional motility, endocytosis, and invasion. Reverse transcription-PCR revealed that Na(v)1.5, in its newly identified "neonatal" splice form, was specifically associated with strong metastatic potential in vitro and breast cancer progression in vivo. An antibody specific for this form confirmed up-regulation of neonatal Na(v)1.5 protein in breast cancer cells and tissues. Furthermore, a strong correlation was found between neonatal Na(v)1.5 expression and clinically assessed lymph node metastasis. Up-regulation of neonatal Na(v)1.5 occurs as an integral part of the metastatic process in human breast cancer and could serve both as a novel marker of the metastatic phenotype and a therapeutic target.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                19 January 2015
                2014
                : 5
                : 519
                Affiliations
                [1] 1Department of Biology, Tufts Center for Regenerative and Developmental Biology, Tufts University Medford, MA, USA
                [2] 2Independent Researcher Sonoma, CA, USA
                Author notes

                Edited by: Michal Cifra, Academy of Sciences of the Czech Republic, Czech Republic

                Reviewed by: Leigh Anne Swayne, University of Victoria, Canada; Richard H. W. Funk, Technische Universität Dresden, Germany; Mariano Bizzarri, University La Sapienza Roma, Italy

                *Correspondence: Michael Levin, Department of Biology, Tufts Center for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Suite 4600 Medford, MA 02155, USA e-mail: michael.levin@ 123456tufts.edu

                This article was submitted to Biophysics, a section of the journal Frontiers in Physiology.

                Article
                10.3389/fphys.2014.00519
                4298169
                25646081
                195d9862-0f11-4cbd-ae21-91c8b2f710ab
                Copyright © 2015 Chernet, Fields and Levin.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 01 September 2014
                : 18 December 2014
                Page count
                Figures: 8, Tables: 0, Equations: 0, References: 129, Pages: 15, Words: 12302
                Categories
                Physics
                Original Research Article

                Anatomy & Physiology
                cancer,connexin,ion channel,membrane voltage,bioelectricity,long-range signaling,left-right asymmetry

                Comments

                Comment on this article