14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A likelihood-based framework for the analysis of discussion threads

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Online discussion threads are conversational cascades in the form of posted messages that can be generally found in social systems that comprise many-to-many interaction such as blogs, news aggregators or bulletin board systems. We propose a framework based on generative models of growing trees to analyse the structure and evolution of discussion threads. We consider the growth of a discussion to be determined by an interplay between popularity, novelty and a trend (or bias) to reply to the thread originator. The relevance of these features is estimated using a full likelihood approach and allows to characterize the habits and communication patterns of a given platform and/or community.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Emergence of scaling in random networks

          Systems as diverse as genetic networks or the world wide web are best described as networks with complex topology. A common property of many large networks is that the vertex connectivities follow a scale-free power-law distribution. This feature is found to be a consequence of the two generic mechanisms that networks expand continuously by the addition of new vertices, and new vertices attach preferentially to already well connected sites. A model based on these two ingredients reproduces the observed stationary scale-free distributions, indicating that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A Theory of Fads, Fashion, Custom, and Cultural Change as Informational Cascades

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A simple model of global cascades on random networks.

              The origin of large but rare cascades that are triggered by small initial shocks is a phenomenon that manifests itself as diversely as cultural fads, collective action, the diffusion of norms and innovations, and cascading failures in infrastructure and organizational networks. This paper presents a possible explanation of this phenomenon in terms of a sparse, random network of interacting agents whose decisions are determined by the actions of their neighbors according to a simple threshold rule. Two regimes are identified in which the network is susceptible to very large cascades-herein called global cascades-that occur very rarely. When cascade propagation is limited by the connectivity of the network, a power law distribution of cascade sizes is observed, analogous to the cluster size distribution in standard percolation theory and avalanches in self-organized criticality. But when the network is highly connected, cascade propagation is limited instead by the local stability of the nodes themselves, and the size distribution of cascades is bimodal, implying a more extreme kind of instability that is correspondingly harder to anticipate. In the first regime, where the distribution of network neighbors is highly skewed, it is found that the most connected nodes are far more likely than average nodes to trigger cascades, but not in the second regime. Finally, it is shown that heterogeneity plays an ambiguous role in determining a system's stability: increasingly heterogeneous thresholds make the system more vulnerable to global cascades; but an increasingly heterogeneous degree distribution makes it less vulnerable.
                Bookmark

                Author and article information

                Journal
                03 March 2012
                Article
                10.1007/s11280-012-0162-8
                1203.0652
                195e64cd-5aa2-4c71-a4cd-62939e0e71e0

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                31 pages, 12 figures, journal
                cs.SI physics.soc-ph

                Comments

                Comment on this article