35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Involvement of the Post-Transcriptional Regulator Hfq in Yersinia pestis Virulence

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Yersinia pestis is the causative agent of plague, which is transmitted primarily between fleas and mammals and is spread to humans through the bite of an infected flea or contact with afflicted animals. Hfq is proposed to be a global post-transcriptional regulator that acts by mediating interactions between many regulatory small RNAs (sRNAs) and their mRNA targets. Sequence comparisons revealed that Y. pestis appears to produce a functional homologue of E. coli Hfq.

          Methodology and Principal Findings

          Phenotype comparisons using in vitro assays demonstrated that Y. pestis Hfq was involved in resistance to H 2O 2, heat and polymyxin B and contributed to growth under nutrient-limiting conditions. The role of Hfq in Y. pestis virulence was also assessed using macrophage and mouse infection models, and the gene expression affected by Hfq was determined using microarray-based transcriptome and real time PCR analysis. The macrophage infection assay showed that the Y. pestis hfq deletion strain did not have any significant difference in its ability to associate with J774A.1 macrophage cells. However, hfq deletion appeared to significantly impair the ability of Y. pestis to resist phagocytosis and survive within macrophages at the initial stage of infection. Furthermore, the hfq deletion strain was highly attenuated in mice after subcutaneous or intravenous injection. Transcriptome analysis supported the results concerning the attenuated phenotype of the hfq mutant and showed that the deletion of the hfq gene resulted in significant alterations in mRNA abundance of 243 genes in more than 13 functional classes, about 23% of which are known or hypothesized to be involved in stress resistance and virulence.

          Conclusions and Significance

          Our results indicate that Hfq is a key regulator involved in Y. pestis stress resistance, intracellular survival and pathogenesis. It appears that Hfq acts by controlling the expression of many virulence- and stress-associated genes, probably in conjunction with small noncoding RNAs.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Yersinia pestis--etiologic agent of plague.

          Plague is a widespread zoonotic disease that is caused by Yersinia pestis and has had devastating effects on the human population throughout history. Disappearance of the disease is unlikely due to the wide range of mammalian hosts and their attendant fleas. The flea/rodent life cycle of Y. pestis, a gram-negative obligate pathogen, exposes it to very different environmental conditions and has resulted in some novel traits facilitating transmission and infection. Studies characterizing virulence determinants of Y. pestis have identified novel mechanisms for overcoming host defenses. Regulatory systems controlling the expression of some of these virulence factors have proven quite complex. These areas of research have provide new insights into the host-parasite relationship. This review will update our present understanding of the history, etiology, epidemiology, clinical aspects, and public health issues of plague.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae.

            Quorum-sensing bacteria communicate with extracellular signal molecules called autoinducers. This process allows community-wide synchronization of gene expression. A screen for additional components of the Vibrio harveyi and Vibrio cholerae quorum-sensing circuits revealed the protein Hfq. Hfq mediates interactions between small, regulatory RNAs (sRNAs) and specific messenger RNA (mRNA) targets. These interactions typically alter the stability of the target transcripts. We show that Hfq mediates the destabilization of the mRNA encoding the quorum-sensing master regulators LuxR (V. harveyi) and HapR (V. cholerae), implicating an sRNA in the circuit. Using a bioinformatics approach to identify putative sRNAs, we identified four candidate sRNAs in V. cholerae. The simultaneous deletion of all four sRNAs is required to stabilize hapR mRNA. We propose that Hfq, together with these sRNAs, creates an ultrasensitive regulatory switch that controls the critical transition into the high cell density, quorum-sensing mode.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis.

              Plague, one of the most devastating diseases of human history, is caused by Yersinia pestis. In this study, we analyzed the population genetic structure of Y. pestis and the two other pathogenic Yersinia species, Y. pseudotuberculosis and Y. enterocolitica. Fragments of five housekeeping genes and a gene involved in the synthesis of lipopolysaccharide were sequenced from 36 strains representing the global diversity of Y. pestis and from 12-13 strains from each of the other species. No sequence diversity was found in any Y. pestis gene, and these alleles were identical or nearly identical to alleles from Y. pseudotuberculosis. Thus, Y. pestis is a clone that evolved from Y. pseudotuberculosis 1,500-20,000 years ago, shortly before the first known pandemics of human plague. Three biovars (Antiqua, Medievalis, and Orientalis) have been distinguished by microbiologists within the Y. pestis clone. These biovars form distinct branches of a phylogenetic tree based on restriction fragment length polymorphisms of the locations of the IS100 insertion element. These data are consistent with previous inferences that Antiqua caused a plague pandemic in the sixth century, Medievalis caused the Black Death and subsequent epidemics during the second pandemic wave, and Orientalis caused the current plague pandemic.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2009
                10 July 2009
                : 4
                : 7
                : e6213
                Affiliations
                [1 ]State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
                [2 ]Laboratory Animal Center, Academy of Military Medical Sciences, Beijing, China
                Theodor-Boveri-Institut fur Biowissenschaften, Wurzburg, Germany
                Author notes

                Conceived and designed the experiments: JG YS RY YH. Performed the experiments: JG LY Y. Qiu GL JG YB Y. Qu WW XW YH. Analyzed the data: JG YY YH. Contributed reagents/materials/analysis tools: YY Y. Qiu GL ZG. Wrote the paper: JG YS RY YH.

                Article
                09-PONE-RA-08241R3
                10.1371/journal.pone.0006213
                2704395
                19593436
                1962da3a-771d-4ca2-a1af-7cf08928e86c
                Geng et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 19 January 2009
                : 18 June 2009
                Page count
                Pages: 10
                Categories
                Research Article
                Genetics and Genomics/Functional Genomics
                Microbiology/Cellular Microbiology and Pathogenesis
                Infectious Diseases/Bacterial Infections

                Uncategorized
                Uncategorized

                Comments

                Comment on this article