36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exercise Enhances Hippocampal Recovery following Binge Ethanol Exposure

      research-article
      1 , 1 , 2 , *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Binge drinking damages the brain, and although a significant amount of recovery occurs with abstinence, there is a need for effective strategies to maximize neurorestoration. In contrast to binge drinking, exercise promotes brain health, so the present study assessed whether it could counteract ethanol-induced damage by augmenting natural self-repair processes following one or more binge exposures. Adult female rats were exposed to 0 (control), 1 or 2 binges, using an established 4-day model of binge-induced neurodegeneration. Half of the animals in each group remained sedentary, or had running wheel access beginning 7 days after the final binge, and were sacrificed 28 days later. To assess binge-induced hippocampal damage and exercise restoration, we quantified volume of the dentate gyrus and number of granule neurons. We found that a single binge exposure significantly decreased the volume of the dentate gyrus and number of granule neurons. A second binge did not exacerbate the damage. Exercise completely restored baseline volume and granule neuron numbers. To investigate a potential mechanism of this restoration, we administered IdU (a thymidine analog) in order to label cells generated after the first binge. Previous studies have shown that neurogenesis in the dentate gyrus is decreased by binge alcohol exposure, and that the hippocampus responds to this insult by increasing cell genesis during abstinence. We found increased IdU labeling in binge-exposed animals, and a further increase in binged animals that exercised. Our results indicate that exercise reverses long-lasting hippocampal damage by augmenting natural self-repair processes.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Running enhances neurogenesis, learning, and long-term potentiation in mice.

          Running increases neurogenesis in the dentate gyrus of the hippocampus, a brain structure that is important for memory function. Consequently, spatial learning and long-term potentiation (LTP) were tested in groups of mice housed either with a running wheel (runners) or under standard conditions (controls). Mice were injected with bromodeoxyuridine to label dividing cells and trained in the Morris water maze. LTP was studied in the dentate gyrus and area CA1 in hippocampal slices from these mice. Running improved water maze performance, increased bromodeoxyuridine-positive cell numbers, and selectively enhanced dentate gyrus LTP. Our results indicate that physical activity can regulate hippocampal neurogenesis, synaptic plasticity, and learning.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The rodent estrous cycle: characterization of vaginal cytology and its utility in toxicological studies.

            While an evaluation of the estrous cycle in laboratory rodents can be a useful measure of the integrity of the hypothalamic-pituitary-ovarian reproductive axis, it can also serve as a way of insuring that animals exhibiting abnormal cycling patterns are disincluded from a study prior to exposure to a test compound. Assessment of vaginal cytology in regularly cycling animals also provides a means to establish a comparable endocrine milieu for animals at necropsy. The procedure for obtaining a vaginal smear is relatively non-invasive and is one to which animals can become readily accustomed. It requires few supplies, and with some experience the assessments can be easily performed in fresh, unstained smears, or in fixed, stained ones. When incorporated as an adjunct to other endpoint measures, a determination of a female's cycling status can contribute important information about the nature of a toxicant insult to the reproductive system. In doing so, it can help to integrate the data into a more comprehensive mechanistic portrait of the effect, and in terms of risk assessment, may provide some indication of a toxicant's impact on human reproductive physiology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Estrogen stimulates a transient increase in the number of new neurons in the dentate gyrus of the adult female rat.

              To determine whether a sex difference exists in the production of hippocampal cells during adulthood, we examined proliferating cells and their progeny in adult rats using the thymidine analog bromodeoxyuridine (BrdU) combined with immunohistochemistry for markers of neurons and glia. Additionally, to determine whether ovarian hormones affect cell proliferation, we examined the numbers of BrdU-labeled cells at different estrous cycle stages and after ovarian steroid manipulation. Stereological analyses of the numbers of BrdU-labeled cells revealed that females produced more cells than males in the dentate gyrus but not in the subventricular zone. The production of new hippocampal cells in females appears to be affected by ovarian hormone levels; ovariectomy diminished the number of BrdU-labeled cells, an effect reversed by estrogen replacement. A natural fluctuation in cell proliferation was also noted; females produced more cells during proestrus (when estrogen levels are highest) compared with estrus and diestrus. Many of these cells acquired neuronal characteristics, including the formation of dendrites and expression of Turned-On-After-Division 64 kDa, a marker of immature granule neurons, and the calcium-binding protein calbindin, a marker of mature granule neurons. However, examination of the numbers of pyknotic cells and the numbers of BrdU-labeled cells at longer survival times revealed that many new cells in the dentate gyrus eventually degenerate. Consistently the number of labeled cells in females is no longer higher than that observed in males by 2 weeks after the last BrdU injection. These findings suggest that estrogen-enhanced cell proliferation during proestrus results in more immature neurons in the hippocampal formation of females compared with males and present the possibility that these new cells exert an important influence on hippocampal function.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                30 September 2013
                : 8
                : 9
                : e76644
                Affiliations
                [1 ]Department of Psychology, University of Houston, Houston, Texas, United States of America
                [2 ]Department of Biology & Biochemistry, University of Houston, Houston, Texas, United States of America
                University of Victoria, Canada
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: MEM JLL. Performed the experiments: MEM. Analyzed the data: MEM. Contributed reagents/materials/analysis tools: JLL. Wrote the paper: MEM JLL.

                Article
                PONE-D-13-29588
                10.1371/journal.pone.0076644
                3786922
                196a92bf-5f4b-40ad-b5f5-a056b6bc7cb3
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 17 July 2013
                : 30 August 2013
                Page count
                Pages: 9
                Funding
                This study was supported by a Grant in Aid to J.L.L. from the University of Houston's College of Liberal Arts and Social Sciences, and a summer fellowship awarded to M.M. by the University of Houston's Biology of Behavior Institute. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article