26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Chk2 activates E2F-1 in response to DNA damage.

      Nature cell biology
      Apoptosis, drug effects, genetics, Cell Cycle, Cell Cycle Proteins, Cell Nucleus, metabolism, Checkpoint Kinase 2, DNA Damage, DNA-Binding Proteins, E2F Transcription Factors, E2F1 Transcription Factor, Etoposide, pharmacology, Eukaryotic Cells, Gene Expression Regulation, Neoplastic, Humans, Mutation, Nucleic Acid Synthesis Inhibitors, Phosphorylation, Protein Kinases, Protein-Serine-Threonine Kinases, Serine, Signal Transduction, Transcription Factors, Transcriptional Activation, Tumor Cells, Cultured, Tumor Suppressor Proteins

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The E2F-1 transcription factor is regulated during cell cycle progression and induced by cellular stress, such as DNA damage. We report that checkpoint kinase 2 (Chk2) regulates E2F-1 activity in response to the DNA-damaging agent etoposide. A Chk2 consensus phosphorylation site in E2F-1 is phosphorylated in response to DNA damage, resulting in protein stabilization, increased half-life, transcriptional activation and localization of phosphorylated E2F-1 to discrete nuclear structures. Expression of a dominant-negative Chk2 mutant blocks induction of E2F-1 and prevents E2F-1-dependent apoptosis. Moreover, E2F-1 is resistant to induction by etoposide in tumour cells expressing mutant chk2. Therefore, Chk2 phosphorylates and activates E2F-1 in response to DNA damage, resulting in apoptosis. These results suggest a role for E2F-1 in checkpoint control and provide a plausible explanation for the tumour suppressor activity of E2F-1.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Sibling rivalry in the E2F family.

          The E2F transcription factor family determines whether or not a cell will divide by controlling the expression of key cell-cycle regulators. The individual E2Fs can be divided into distinct subgroups that act in direct opposition to one another to promote either cellular proliferation or cell-cycle exit and terminal differentiation. What is the underlying molecular basis of this 'push-me-pull-you' regulation, and what are its biological consequences?
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of p53 in response to DNA damage.

            Activation of p53 can occur in response to a number of cellular stresses, including DNA damage, hypoxia and nucleotide deprivation. Several forms of DNA damage have been shown to activate p53, including those generated by ionising radiation (IR), radio-mimetic drugs, ultraviolet light (UV) and chemicals such as methyl methane sulfonate (MMS). Under normal conditions, p53 levels are maintained at a low state by virtue of the extremely short-half life of the polypeptide. In addition to this, p53 normally exists in an largely inactive state that is relatively inefficient at binding to DNA and activating transcription. Activation of p53 in response to DNA damage is associated with a rapid increase in its levels and with an increased ability of p53 to bind DNA and mediate transcriptional activation. This then leads to the activation of a number of genes whose products trigger cell-cycle arrest, apoptosis, or DNA repair. Recent work has suggested that this regulation is brought about largely through DNA damage triggering a series of phosphorylation, de-phosphorylation and acetylation events on the p53 polypeptide. Here, we discuss the nature of these modifications, the enzymes that bring them about, and how changes in p53 modification lead to p53 activation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro.

              The protein kinase Chk2, the mammalian homolog of the budding yeast Rad53 and fission yeast Cds1 checkpoint kinases, is phosphorylated and activated in response to DNA damage by ionizing radiation (IR), UV irradiation, and replication blocks by hydroxyurea (HU). Phosphorylation and activation of Chk2 are ataxia telangiectasia-mutated (ATM) dependent in response to IR, whereas Chk2 phosphorylation is ATM-independent when cells are exposed to UV or HU. Here we show that in vitro, ATM phosphorylates the Ser-Gln/Thr-Gln (SQ/TQ) cluster domain (SCD) on Chk2, which contains seven SQ/TQ motifs, and Thr68 is the major in vitro phosphorylation site by ATM. ATM- and Rad3-related also phosphorylates Thr68 in addition to Thr26 and Ser50, which are not phosphorylated to a significant extent by ATM in vitro. In vivo, Thr68 is phosphorylated in an ATM-dependent manner in response to IR, but not in response to UV or HU. Substitution of Thr68 with Ala reduced the extent of phosphorylation and activation of Chk2 in response to IR, and mutation of all seven SQ/TQ motifs blocked all phosphorylation and activation of Chk2 after IR. These results suggest that in vivo, Chk2 is directly phosphorylated by ATM in response to IR and that Chk2 is regulated by phosphorylation of the SCD.
                Bookmark

                Author and article information

                Comments

                Comment on this article