40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Objective assessment of dietary patterns by use of metabolic phenotyping: a randomised, controlled, crossover trial

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Background

          Accurate monitoring of changes in dietary patterns in response to food policy implementation is challenging. Metabolic profiling allows simultaneous measurement of hundreds of metabolites in urine, the concentrations of which can be affected by food intake. We hypothesised that metabolic profiles of urine samples developed under controlled feeding conditions reflect dietary intake and can be used to model and classify dietary patterns of free-living populations.

          Methods

          In this randomised, controlled, crossover trial, we recruited healthy volunteers (aged 21–65 years, BMI 20–35 kg/m 2) from a database of a clinical research unit in the UK. We developed four dietary interventions with a stepwise variance in concordance with the WHO healthy eating guidelines that aim to prevent non-communicable diseases (increase fruits, vegetables, whole grains, and dietary fibre; decrease fats, sugars, and salt). Participants attended four inpatient stays (72 h each, separated by at least 5 days), during which they were given one dietary intervention. The order of diets was randomly assigned across study visits. Randomisation was done by an independent investigator, with the use of opaque, sealed, sequentially numbered envelopes that each contained one of the four dietary interventions in a random order. Participants and investigators were not masked from the dietary intervention, but investigators analysing the data were masked from the randomisation order. During each inpatient period, urine was collected daily over three timed periods: morning (0900–1300 h), afternoon (1300–1800 h), and evening and overnight (1800–0900 h); 24 h urine samples were obtained by pooling these samples. Urine samples were assessed by proton nuclear magnetic resonance ( 1H-NMR) spectroscopy, and diet-discriminatory metabolites were identified. We developed urinary metabolite models for each diet and identified the associated metabolic profiles, and then validated the models using data and samples from the INTERMAP UK cohort (n=225) and a healthy-eating Danish cohort (n=66). This study is registered with ISRCTN, number ISRCTN43087333.

          Findings

          Between Aug 13, 2013, and May 18, 2014, we contacted 300 people with a letter of invitation. 78 responded, of whom 26 were eligible and invited to attend a health screening. Of 20 eligible participants who were randomised, 19 completed all four 72 h study stays between Oct 2, 2013, and July 29, 2014, and consumed all the food provided. Analysis of 1H-NMR spectroscopy data indicated that urinary metabolic profiles of the four diets were distinct. Significant stepwise differences in metabolite concentrations were seen between diets with the lowest and highest metabolic risks. Application of the derived metabolite models to the validation datasets confirmed the association between urinary metabolic and dietary profiles in the INTERMAP UK cohort (p<0·0001) and the Danish cohort (p<0·0001).

          Interpretation

          Urinary metabolite models developed in a highly controlled environment can classify groups of free-living people into consumers of diets associated with lower or higher non-communicable disease risk on the basis of multivariate metabolite patterns. This approach enables objective monitoring of dietary patterns in population settings and enhances the validity of dietary reporting.

          Funding

          UK National Institute for Health Research and UK Medical Research Council.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013.

          In 2010, overweight and obesity were estimated to cause 3·4 million deaths, 3·9% of years of life lost, and 3·8% of disability-adjusted life-years (DALYs) worldwide. The rise in obesity has led to widespread calls for regular monitoring of changes in overweight and obesity prevalence in all populations. Comparable, up-to-date information about levels and trends is essential to quantify population health effects and to prompt decision makers to prioritise action. We estimate the global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013. We systematically identified surveys, reports, and published studies (n=1769) that included data for height and weight, both through physical measurements and self-reports. We used mixed effects linear regression to correct for bias in self-reports. We obtained data for prevalence of obesity and overweight by age, sex, country, and year (n=19,244) with a spatiotemporal Gaussian process regression model to estimate prevalence with 95% uncertainty intervals (UIs). Worldwide, the proportion of adults with a body-mass index (BMI) of 25 kg/m(2) or greater increased between 1980 and 2013 from 28·8% (95% UI 28·4-29·3) to 36·9% (36·3-37·4) in men, and from 29·8% (29·3-30·2) to 38·0% (37·5-38·5) in women. Prevalence has increased substantially in children and adolescents in developed countries; 23·8% (22·9-24·7) of boys and 22·6% (21·7-23·6) of girls were overweight or obese in 2013. The prevalence of overweight and obesity has also increased in children and adolescents in developing countries, from 8·1% (7·7-8·6) to 12·9% (12·3-13·5) in 2013 for boys and from 8·4% (8·1-8·8) to 13·4% (13·0-13·9) in girls. In adults, estimated prevalence of obesity exceeded 50% in men in Tonga and in women in Kuwait, Kiribati, Federated States of Micronesia, Libya, Qatar, Tonga, and Samoa. Since 2006, the increase in adult obesity in developed countries has slowed down. Because of the established health risks and substantial increases in prevalence, obesity has become a major global health challenge. Not only is obesity increasing, but no national success stories have been reported in the past 33 years. Urgent global action and leadership is needed to help countries to more effectively intervene. Bill & Melinda Gates Foundation. Copyright © 2014 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies.

            Polyphenols are abundant micronutrients in our diet, and evidence for their role in the prevention of degenerative diseases is emerging. Bioavailability differs greatly from one polyphenol to another, so that the most abundant polyphenols in our diet are not necessarily those leading to the highest concentrations of active metabolites in target tissues. Mean values for the maximal plasma concentration, the time to reach the maximal plasma concentration, the area under the plasma concentration-time curve, the elimination half-life, and the relative urinary excretion were calculated for 18 major polyphenols. We used data from 97 studies that investigated the kinetics and extent of polyphenol absorption among adults, after ingestion of a single dose of polyphenol provided as pure compound, plant extract, or whole food/beverage. The metabolites present in blood, resulting from digestive and hepatic activity, usually differ from the native compounds. The nature of the known metabolites is described when data are available. The plasma concentrations of total metabolites ranged from 0 to 4 mumol/L with an intake of 50 mg aglycone equivalents, and the relative urinary excretion ranged from 0.3% to 43% of the ingested dose, depending on the polyphenol. Gallic acid and isoflavones are the most well-absorbed polyphenols, followed by catechins, flavanones, and quercetin glucosides, but with different kinetics. The least well-absorbed polyphenols are the proanthocyanidins, the galloylated tea catechins, and the anthocyanins. Data are still too limited for assessment of hydroxycinnamic acids and other polyphenols. These data may be useful for the design and interpretation of intervention studies investigating the health effects of polyphenols.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Precision high-throughput proton NMR spectroscopy of human urine, serum, and plasma for large-scale metabolic phenotyping.

              Proton nuclear magnetic resonance (NMR)-based metabolic phenotyping of urine and blood plasma/serum samples provides important prognostic and diagnostic information and permits monitoring of disease progression in an objective manner. Much effort has been made in recent years to develop NMR instrumentation and technology to allow the acquisition of data in an effective, reproducible, and high-throughput approach that allows the study of general population samples from epidemiological collections for biomarkers of disease risk. The challenge remains to develop highly reproducible methods and standardized protocols that minimize technical or experimental bias, allowing realistic interlaboratory comparisons of subtle biomarker information. Here we present a detailed set of updated protocols that carefully consider major experimental conditions, including sample preparation, spectrometer parameters, NMR pulse sequences, throughput, reproducibility, quality control, and resolution. These results provide an experimental platform that facilitates NMR spectroscopy usage across different large cohorts of biofluid samples, enabling integration of global metabolic profiling that is a prerequisite for personalized healthcare.
                Bookmark

                Author and article information

                Contributors
                Journal
                Lancet Diabetes Endocrinol
                Lancet Diabetes Endocrinol
                The Lancet. Diabetes & Endocrinology
                The Lancet, Diabetes & Endocrinology
                2213-8587
                2213-8595
                1 March 2017
                March 2017
                : 5
                : 3
                : 184-195
                Affiliations
                [a ]Nutrition and Dietetic Research Group, Division of Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, UK
                [b ]Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, UK
                [c ]Department of Epidemiology and Biostatistics, Medical Research Council (MRC)–Public Health England Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
                [d ]MRC–National Institute for Health Research (NIHR) National Phenome Centre, Department of Surgery and Cancer, Imperial College London, London, UK
                [e ]The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
                [f ]Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
                [g ]Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
                [h ]Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, USA
                [i ]Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle, UK
                Author notes
                [* ]Correspondence to: Prof Gary Frost, Nutrition and Dietetic Research Group, Division of Diabetes, Endocrinology and Metabolism, Faculty of Medicine, Imperial College London, DuCane Road, London W12 ONN, UKCorrespondence to: Prof Gary FrostNutrition and Dietetic Research GroupDivision of Diabetes, Endocrinology and MetabolismFaculty of MedicineImperial College LondonDuCane RoadLondonW12 ONNUK g.frost@ 123456imperial.ac.uk
                [** ]Correspondence to: Prof Elaine Holmes, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Exhibition Road, London SW7 2AZ, UKCorrespondence to: Prof Elaine HolmesDivision of Computational and Systems MedicineDepartment of Surgery and CancerFaculty of MedicineImperial College LondonExhibition RoadLondonSW7 2AZUK elaine.holmes@ 123456imperial.ac.uk
                [†]

                These authors contributed equally

                Article
                S2213-8587(16)30419-3
                10.1016/S2213-8587(16)30419-3
                5357736
                28089709
                1974c13d-51a9-4f7d-82d5-9178a20ea33a
                © 2017 The Author(s). Published by Elsevier Ltd. This is an Open Access Article under the CC BY license

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                Categories
                Articles

                Comments

                Comment on this article