3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Corticosterone Excess-Mediated Mitochondrial Damage Induces Hippocampal Neuronal Autophagy in Mice Following Cold Exposure

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simple Summary

          In this study, the phenomenon of ‘autophagy’ was demonstrated in the hippocampus following cold exposure. Persistent neuronal stimulation of the hippocampus after corticosterone (CORT) treatment induced mitochondrial damage and autophagy by activating the AMPK/mTOR signaling pathway, which did not rely on glucocorticoid receptors (GRs). The phenomenon in the hippocampus of the cold stress mice was also a sex-related difference in the response to cold stress; the phenomenon of autophagy was more severe in males. These findings provided a new understanding of the underlying mechanisms of the cold stress response, which may influence the selection of animal models in future stress-related studies.

          Abstract

          Cold stress can induce autophagy mediated by excess corticosterone (CORT) in the hippocampus, but the internal mechanism induced by cold stress is not clear. In vivo, male and female C57BL/6 mice were stimulated in 4 °C, 3 h per day for 1 week to build the model of cold sress. In vitro, hippocampal neuronal cell line (HT22) cells were incubated with or without mifepristone (RU486) for 1 h, then treated with 400 μM cortisol (CORT) for 3 h. In vivo, autophagy was measured by western blotting. In vitro, monodansylcadaverine staining, western blotting, flow cytometry, transmission electron microscopy, and immunofluorescence were used to characterize the mechanism of autophagy induced by excess CORT. Autophagy was shown in mouse hippocampus tissues following cold exposure, including mitochondrial damage, autophagy, and 5’ AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway activation after CORT treatment. Autophagy did not rely on the glucocorticoid receptor. In addition, autophagy in male mice was more severe. The study would provide new insight into the mechanisms and the negative effect of the cold stress response, which can inform the development of new strategies to combat the effects of hypothermia.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          Autophagy maintains stemness by preventing senescence.

          During ageing, muscle stem-cell regenerative function declines. At advanced geriatric age, this decline is maximal owing to transition from a normal quiescence into an irreversible senescence state. How satellite cells maintain quiescence and avoid senescence until advanced age remains unknown. Here we report that basal autophagy is essential to maintain the stem-cell quiescent state in mice. Failure of autophagy in physiologically aged satellite cells or genetic impairment of autophagy in young cells causes entry into senescence by loss of proteostasis, increased mitochondrial dysfunction and oxidative stress, resulting in a decline in the function and number of satellite cells. Re-establishment of autophagy reverses senescence and restores regenerative functions in geriatric satellite cells. As autophagy also declines in human geriatric satellite cells, our findings reveal autophagy to be a decisive stem-cell-fate regulator, with implications for fostering muscle regeneration in sarcopenia.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            LC3/GABARAP family proteins: autophagy-(un)related functions.

            From yeast to mammals, autophagy is an important mechanism for sustaining cellular homeostasis through facilitating the degradation and recycling of aged and cytotoxic components. During autophagy, cargo is captured in double-membraned vesicles, the autophagosomes, and degraded through lysosomal fusion. In yeast, autophagy initiation, cargo recognition, cargo engulfment, and vesicle closure is Atg8 dependent. In higher eukaryotes, Atg8 has evolved into the LC3/GABARAP protein family, consisting of 7 family proteins [LC3A (2 splice variants), LC3B, LC3C, GABARAP, GABARAPL1, and GABARAPL2]. LC3B, the most studied family protein, is associated with autophagosome development and maturation and is used to monitor autophagic activity. Given the high homology, the other LC3/GABARAP family proteins are often presumed to fulfill similar functions. Nevertheless, substantial evidence shows that the LC3/GABARAP family proteins are unique in function and important in autophagy-independent mechanisms. In this review, we discuss the current knowledge and functions of the LC3/GABARAP family proteins. We focus on processing of the individual family proteins and their role in autophagy initiation, cargo recognition, vesicle closure, and trafficking, a complex and tightly regulated process that requires selective presentation and recruitment of these family proteins. In addition, functions unrelated to autophagy of the LC3/GABARAP protein family members are discussed.-Schaaf, M. B. E., Keulers, T. G, Vooijs, M. A., Rouschop, K. M. A. LC3/GABARAP family proteins: autophagy-(un)related functions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of the Social Environment and Stress on Glucocorticoid Receptor Gene Methylation: A Systematic Review.

              The early-life social environment can induce stable changes that influence neurodevelopment and mental health. Research focused on early-life adversity revealed that early-life experiences have a persistent impact on gene expression and behavior through epigenetic mechanisms. The hypothalamus-pituitary-adrenal axis is sensitive to changes in the early-life environment that associate with DNA methylation of a neuron-specific exon 17 promoter of the glucocorticoid receptor (GR) (Nr3c1). Since initial findings were published in 2004, numerous reports have investigated GR gene methylation in relationship to early-life experience, parental stress, and psychopathology. We conducted a systematic review of this growing literature, which identified 40 articles (13 animal and 27 human studies) published since 2004. The majority of these examined the GR exon variant 1F in humans or the GR17 in rats, and 89% of human studies and 70% of animal studies of early-life adversity reported increased methylation at this exon variant. All the studies investigating exon 1F/17 methylation in conditions of parental stress (one animal study and seven human studies) also reported increased methylation. Studies examining psychosocial stress and psychopathology had less consistent results, with 67% of animal studies reporting increased exon 17 methylation and 17% of human studies reporting increased exon 1F methylation. We found great consistency among studies investigating early-life adversity and the effect of parental stress, even if the precise phenotype and measures of social environment adversity varied among studies. These results are encouraging and warrant further investigation to better understand correlates and characteristics of these associations.
                Bookmark

                Author and article information

                Journal
                Animals (Basel)
                Animals (Basel)
                animals
                Animals : an Open Access Journal from MDPI
                MDPI
                2076-2615
                14 September 2019
                September 2019
                : 9
                : 9
                : 682
                Affiliations
                College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; xubin@ 123456byau.edu.cn (B.X.); langlanglimin@ 123456163.com (L.L.); byndlsz@ 123456163.com (S.L.); byndeyhy@ 123456163.com (J.Y.); wjflw@ 123456sina.com (J.W.)
                Author notes
                [* ]Correspondence: byndyhm@ 123456163.com (H.Y.); lianlianshuai@ 123456163.com (S.L.)
                [†]

                Equal contributors.

                Author information
                https://orcid.org/0000-0003-3323-6522
                Article
                animals-09-00682
                10.3390/ani9090682
                6770033
                31540011
                1981de01-ab67-49f9-981e-f39ecc2a9ee7
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 30 August 2019
                : 12 September 2019
                Categories
                Article

                cold stress,cort excess,hippocampal neuronal,mitochondria damage,autophagy

                Comments

                Comment on this article