8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Involvement of the CD95 (APO–1/Fas) receptor/ligand system in drug–induced apoptosis in leukemia cells

      , , ,
      Nature Medicine
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cytotoxic drugs used in chemotherapy of leukemias and solid tumors cause apoptosis in target cells. In lymphoid cells the CD95 (APO-1/Fas)/CD95 ligand (CD95-L) system is a key regulator of apoptosis. Here we describe that doxorbicin induces apoptosis via the CD95/CD95-L system in human leukemia T-cell lines. Doxorubicin-induced apoptosis was completely blocked by inhibition of gene expression and protein synthesis. Also, doxorbicin strongly stimulates CD95-L messenger RNA expression in vitro at concentrations relevant for therapy in vivo. CEM and jurkat cells resistant to CD95-mediated apoptosis were also resistant to doxorbicin-induced apoptosis . Furthermore, doxorbicin-induced apoptosis was inhibited by blocking F(ab')2 anti-APO-1 (anti-CD95) antibody fragments. Expression of CD95-L mRNA and protein in vitro was also stimulated by other cytotoxic drugs such as methotrexate. The finding that apoptosis caused by anticancer drugs may be mediated via the CD95 system provides a new molecular insight into resistance and sensitivity toward chemotherapy in malignancies.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis.

          The protease responsible for the cleavage of poly(ADP-ribose) polymerase and necessary for apoptosis has been purified and characterized. This enzyme, named apopain, is composed of two subunits of relative molecular mass (M(r)) 17K and 12K that are derived from a common proenzyme identified as CPP32. This proenzyme is related to interleukin-1 beta-converting enzyme (ICE) and CED-3, the product of a gene required for programmed cell death in Caenorhabditis elegans. A potent peptide aldehyde inhibitor has been developed and shown to prevent apoptotic events in vitro, suggesting that apopain/CPP32 is important for the initiation of apoptotic cell death.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family.

            The Fas antigen (Fas) belongs to the tumor necrosis factor (TNF)/nerve growth factor receptor family, and it mediates apoptosis. Using a soluble form of mouse Fas, prepared by fusion with human immunoglobulin Fc, Fas ligand was detected on the cell surface of a cytotoxic T cell hybridoma, PC60-d10S. A cell population that highly expresses Fas ligand was sorted using a fluorescence-activated cell sorter, and its cDNA was isolated from the sorted cells by expression cloning. The amino acid sequence indicated that Fas ligand is a type II transmembrane protein that belongs to the TNF family. The recombinant Fas ligand expressed in COS cells induced apoptosis in Fas-expressing target cells. Northern hybridization revealed that Fas ligand is expressed in activated splenocytes and thymocytes, consistent with its involvement in T cell-mediated cytotoxicity and in several nonlymphoid tissues, such as testis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Autocrine T-cell suicide mediated by APO-1/(Fas/CD95)

              The APO-1/(Fas/CD95) cell surface receptor is a member of the nerve growth factor (NGF)/tumour necrosis factor (TNF) receptor superfamily and mediates apoptosis. Peripheral activated T cells (ATC) from lymphoproliferation (lpr/lpr) mutant mice that express a reduced number of APO-1 receptors have a defect in T-cell receptor (TCR)-induced apoptosis. This suggests that TCR-induced apoptosis involves APO-1. We tested this hypothesis in various human T cells: (1) malignant Jurkat cells, (2) an alloreactive T-cell clone (S13), and (3) peripheral ATC. TCR triggering through immobilized anti-CD3 antibodies or Staphylococcus enterotoxin B (SEB) superantigen induced expression of the APO-1 ligand and apoptosis in these cells. Anti-CD3-induced apoptosis of Jurkat cells was demonstrated even in single-cell cultures. In all cases apoptosis was substantially inhibited by blocking anti-APO-1 antibody fragments and soluble APO-1 receptor decoys. The APO-1 ligand was found in the supernatant of activated Jurkat cells as a soluble cytokine. We propose that TCR-induced apoptosis in ATC can occur through an APO-1 ligand-mediated autocrine suicide. These results provide a mechanism for suppression of the immune response and for peripheral tolerance by T-cell deletion.
                Bookmark

                Author and article information

                Journal
                Nature Medicine
                Nat Med
                Springer Science and Business Media LLC
                1078-8956
                1546-170X
                May 1996
                May 1996
                : 2
                : 5
                : 574-577
                Article
                10.1038/nm0596-574
                8616718
                19884306-d706-4ec4-b296-63b8c104ce4f
                © 1996

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article