21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Fitness and stability of obligate cross-feeding interactions that emerge upon gene loss in bacteria

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cross-feeding interactions, in which bacterial cells exchange costly metabolites to the benefit of both interacting partners, are very common in the microbial world. However, it generally remains unclear what maintains this type of interaction in the presence of non-cooperating types. We investigate this problem using synthetic cross-feeding interactions: by simply deleting two metabolic genes from the genome of Escherichia coli, we generated genotypes that require amino acids to grow and release other amino acids into the environment. Surprisingly, in a vast majority of cases, cocultures of two cross-feeding strains showed an increased Darwinian fitness (that is, rate of growth) relative to prototrophic wild type cells--even in direct competition. This unexpected growth advantage was due to a division of metabolic labour: the fitness cost of overproducing amino acids was less than the benefit of not having to produce others when they were provided by their partner. Moreover, frequency-dependent selection maintained cross-feeding consortia and limited exploitation by non-cooperating competitors. Together, our synthetic study approach reveals ecological principles that can help explain the widespread occurrence of obligate metabolic cross-feeding interactions in nature.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Extreme genome reduction in symbiotic bacteria.

          Since 2006, numerous cases of bacterial symbionts with extraordinarily small genomes have been reported. These organisms represent independent lineages from diverse bacterial groups. They have diminutive gene sets that rival some mitochondria and chloroplasts in terms of gene numbers and lack genes that are considered to be essential in other bacteria. These symbionts have numerous features in common, such as extraordinarily fast protein evolution and a high abundance of chaperones. Together, these features point to highly degenerate genomes that retain only the most essential functions, often including a considerable fraction of genes that serve the hosts. These discoveries have implications for the concept of minimal genomes, the origins of cellular organelles, and studies of symbiosis and host-associated microbiota.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Long-Term Experimental Evolution in Escherichia coli. I. Adaptation and Divergence During 2,000 Generations

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              On the Adaptive Control of the False Discovery Rate in Multiple Testing With Independent Statistics

                Bookmark

                Author and article information

                Journal
                The ISME Journal
                ISME J
                Springer Science and Business Media LLC
                1751-7362
                1751-7370
                May 2014
                November 28 2013
                May 2014
                : 8
                : 5
                : 953-962
                Article
                10.1038/ismej.2013.211
                3996690
                24285359
                198935b3-50f5-46ff-ab5d-80ab51c7b866
                © 2014

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article