10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Emodin induces apoptosis in human hepatocellular carcinoma HepaRG cells via the mitochondrial caspase-dependent pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Emodin-induced hepatotoxicity in vivo and in vitro has been gaining increasing attention. However, the exact molecular pathways underlying these effects remain poorly clarified. The aim of the present study was to evaluate the cytotoxic effect of emodin on HepaRG cells and to define the underlying mechanism. The results demonstrated that emodin evidently inhibited HepaRG cell growth in a dose- and time-dependent manner by blocking cell cycle progression in the S and G2/M phase and by inducing apoptosis. Emodin treatment also resulted in generation of reactive oxygen species (ROS), which abrogated mitochondrial membrane potential (MMP). The above effects were all suppressed by antioxidants, such as N-acetylcysteine (NAC). Further studies by western blot analysis howed that emodin upregulated p53, p21, Bax, cyclin E, cleaved caspase-3, 8 and 9, and cleaved poly(ADP-ribose)polymerase (PARP). However, the protein expression of Bcl-2, cyclin A and CDK2 was downregulated. Taken together, our results suggest that emodin induces apoptosis via the mitochondrial apoptosis pathway through cell cycle arrest and ROS generation in HepaRG cells.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis.

          Reactive oxygen species (ROS) have been shown to be toxic but also function as signalling molecules. This biological paradox underlies mechanisms that are important for the integrity and fitness of living organisms and their ageing. The pathways that regulate ROS homeostasis are crucial for mitigating the toxicity of ROS and provide strong evidence about specificity in ROS signalling. By taking advantage of the chemistry of ROS, highly specific mechanisms have evolved that form the basis of oxidant scavenging and ROS signalling systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of the intrinsic apoptosis pathway by reactive oxygen species.

            The intrinsic apoptosis pathway is conserved from worms to humans and plays a critical role in the normal development and homeostatic control of adult tissues. As a result, numerous diseases from cancer to neurodegeneration are associated with either too little or too much apoptosis. B cell lymphoma-2 (BCL-2) family members regulate cell death, primarily via their effects on mitochondria. In stressed cells, proapoptotic BCL-2 family members promote mitochondrial outer membrane permeabilization (MOMP) and cytochrome c (cyt c) release into the cytoplasm, where it stimulates formation of the "apoptosome." This large, multimeric complex is composed of the adapter protein, apoptotic protease-activating factor-1, and the cysteine protease, caspase-9. Recent studies suggest that proteins involved in the processes leading up to (and including) formation of the apoptosome are subject to various forms of post-translational modification, including proteolysis, phosphorylation, and in some cases, direct oxidative modification. Despite intense investigation of the intrinsic pathway, significant questions remain regarding how cyt c is released from mitochondria, how the apoptosome is formed and regulated, and how caspase-9 is activated within the complex. Further studies on the biochemistry of MOMP and apoptosome formation are needed to understand the mechanisms that underpin these critical processes, and novel animal models will be necessary in the future to ascertain the importance of the many posttranslational modifications reported for BCL-2 family members and components of the apoptosome.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Emodin inhibits current through SARS-associated coronavirus 3a protein

              The open-reading-frame 3a of SARS coronavirus (SARS-CoV) had been demonstrated previously to form a cation-selective channel that may become expressed in the infected cell and is then involved in virus release. Drugs that inhibit the ion channel formed by the 3a protein can be expected to inhibit virus release, and would be a source for the development of novel therapeutic agents. Here we demonstrate that emodin can inhibit the 3a ion channel of coronavirus SARS-CoV and HCoV-OC43 as well as virus release from HCoV-OC43 with a K 1/2 value of about 20 μM. We suggest that viral ion channels, in general, may be a good target for the development of antiviral agents.
                Bookmark

                Author and article information

                Journal
                Oncol Rep
                Oncol. Rep
                Oncology Reports
                D.A. Spandidos
                1021-335X
                1791-2431
                October 2018
                02 August 2018
                02 August 2018
                : 40
                : 4
                : 1985-1993
                Affiliations
                [1 ]School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, P.R. China
                [2 ]School of Basic Medical Science, Beijing University of Chinese Medicine, Beijing 100102, P.R. China
                [3 ]Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, P.R. China
                [4 ]Shanghai Binuo Medical Instrument Co., Ltd., Shanghai 200000, P.R. China
                Author notes
                Correspondence to: Professor Jian Ni, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, P.R. China, E-mail: njtcm@ 123456263.net
                [*]

                Contributed equally

                Article
                or-40-04-1985
                10.3892/or.2018.6620
                6111625
                30106438
                198e961e-7f47-4031-a230-918296cabe0f
                Copyright: © Dong et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 26 September 2017
                : 12 February 2018
                Categories
                Articles

                emodin,hepatotoxicity,reactive oxygen species,apoptosis,heparg cells

                Comments

                Comment on this article