0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Continuous testosterone administration prevents skeletal muscle atrophy and enhances resistance to fatigue in orchidectomized male mice

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Androgens promote anabolism in skeletal muscle; however, effects on subsequent muscle function are less well defined because of a lack of reliable experimental models. We established a rigorous model of androgen withdrawal and administration in male mice and assessed androgen regulation of muscle mass, structure, and function. Adult C57Bl/6J male mice were orchidectomized (Orx) or sham-operated (Sham) and received 10 wk of continuous testosterone (T) or control treatment (C) via intraperitoneal implants. Mass, fiber cross-sectional area (CSA), and in vitro contractile function were assessed for fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus (SOL) muscles. After 10 wk, Orx+C mice had reduced body weight gain ( P < 0.05), seminal vesicle mass ( P < 0.01), and levator ani muscle mass ( P < 0.001) compared with Sham+C mice, and these effects were prevented with testosterone treatment. Orx+T mice had greater EDL ( P < 0.01) and SOL ( P < 0.01) muscle mass compared with Orx+C mice; however, median fiber CSA was not significantly altered in these muscles. EDL and SOL muscle force was greater in Sham+T compared with Orx+C mice ( P < 0.05) in proportion to muscle mass. Unexpectedly, Orx+T mice had increased fatigue resistance of SOL muscle compared with Orx+C mice ( P < 0.001). We used a rigorous model of androgen withdrawal and administration in male mice to demonstrate an essential role of androgens in the maintenance of muscle mass and force. In addition, we showed that testosterone treatment increases resistance to fatigue of slow- but not fast-twitch muscle.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Biological actions of androgens.

          Though unnecessary for life itself, androgens are essential for the propagation of the species and for establishment and maintenance of the quality of life of males through their support of sexual behavior and function, muscle strength, and sense of well-being. In carrying out its many functions, T acts both as hormone and prohormone. It is an outstanding example of the diverse evolutionary utilization of a primitive informational molecule both among and within species. Not only does T act through the androgen receptor both unchanged and via 5 alpha-reduction, but it acts in tissues with a high aromatase level as an estrogen via the estrogen receptor. Furthermore, DHT, binding to the estrogen receptor, can act as an inhibitor of estrogen action. The products of androgen metabolism may also play active regulatory roles in hematopoiesis and in the regulation of certain hepatic enzymes. Table 3 summarizes the actions of secreted T in males indicating the probable effector hormone. While gross hypogonadism is uncommon, mild androgen insufficiency may be much more frequent, especially in older men, and in those receiving treatment for chronic medical conditions. It is quite possible that such individuals would benefit from appropriate androgen therapy were it available, but the current forms of replacement therapy are not very satisfactory. Better approaches are required. With the exception of a small number of secreted proteins, the products of transcription induced by androgens are not, as yet, known. When the androgen receptor gene is cloned it will be possible to identify androgen-regulated genes and their products. It will then be possible to design agents selectively producing specific desired androgenic effects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Androgens stimulate myogenic differentiation and inhibit adipogenesis in C3H 10T1/2 pluripotent cells through an androgen receptor-mediated pathway.

            Testosterone supplementation increases skeletal muscle mass and decreases fat mass; however, the underlying mechanisms are unknown. We hypothesized that testosterone regulates body composition by promoting the commitment of mesenchymal pluripotent cells into myogenic lineage and inhibiting their differentiation into adipogenic lineage. Mouse C3H 10T1/2 pluripotent cells were treated with testosterone (0-300 nM) or dihydrotestosterone (DHT, 0-30 nM) for 0-14 d, and myogenic conversion was evaluated by immunocytochemical staining for early (MyoD) and late (myosin heavy chain II; MHC) myogenic markers and by measurements of MyoD and MHC mRNA and protein. Adipogenic differentiation was assessed by adipocyte counting and by measurements of peroxisomal proliferator-activated receptor gamma 2 (PPAR gamma 2) mRNA and PPAR gamma 2 protein and CCAAT/enhancer binding protein alpha. The number of MyoD+ myogenic cells and MHC+ myotubes and MyoD and MHC mRNA and protein levels increased dose dependently in response to testosterone and DHT treatment. Both testosterone and DHT decreased the number of adipocytes and down-regulated the expression of PPAR gamma 2 mRNA and PPAR gamma 2 protein and CCAAT/enhancer binding protein alpha. Androgen receptor mRNA and protein levels were low at baseline but increased after testosterone or DHT treatment. The effects of testosterone and DHT on myogenesis and adipogenesis were blocked by bicalutamide. Therefore, testosterone and DHT regulate lineage determination in mesenchymal pluripotent cells by promoting their commitment to the myogenic lineage and inhibiting their differentiation into the adipogenic lineage through an androgen receptor-mediated pathway. The observation that differentiation of pluripotent cells is androgen dependent provides a unifying explanation for the reciprocal effects of androgens on muscle and fat mass in men.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Exogenous testosterone (T) alone or with finasteride increases physical performance, grip strength, and lean body mass in older men with low serum T.

              Testosterone (T) therapy in older men with low serum T levels increases lean body mass and decreases fat mass. These changes might improve physical performance and strength; however, it has not been established whether T therapy improves functional outcome in older men. Moreover, concerns exist about the impact of T therapy on the prostate in older men. The administration of finasteride (F), which partially blocks the conversion of T to the more potent androgen, dihydrotestosterone, attenuates the impact of T replacement on prostate size and prostate-specific antigen. We hypothesized that T replacement in older, hypogonadal men would improve physical function and that the addition of F to this regimen would continue to provide the T-induced improvements in physical performance, strength, and body composition. Seventy men with low serum T (<350 ng/dl), age 65 yr and older, were randomly assigned to receive one of three regimens for 36 months: 1) T enanthate, 200 mg im every 2 wk, with placebo pills daily (T-only); 2) T enanthate, 200 mg every 2 wk, with 5 mg F daily (T + F); or 3) placebo injections and pills (placebo). We obtained serial measurements of timed physical performance, grip strength, lower extremity strength, body composition (by dual-energy x-ray absorptiometry), fasting cholesterol profiles, and hormones. Fifty men completed the 36-month protocol. After 36 months, T therapy significantly improved performance in a timed functional test when compared with baseline and placebo [4.3 +/- 1.6% (mean +/- sem, T-only) and 3.8 +/- 1.0% (T + F) vs. -5.6 +/- 1.9% for placebo (P < 0.002 for both T and T + F vs. placebo)] and increased handgrip strength compared with baseline and placebo (P < 0.05). T therapy increased lean body mass [3.77 +/- 0.55 kg (T-only) and 3.64 +/- 0.56 kg (T + F) vs. -0.21 +/- 0.55 kg for placebo (P < 0.0001)], decreased fat mass, and significantly decreased total cholesterol, low-density lipoprotein, and leptin, without affecting high-density lipoprotein, adiponectin, or fasting insulin levels. These results demonstrate that T therapy in older men with low serum T improves physical performance and strength over 36 months, when administered alone or when combined with F, and suggest that high serum levels of dihydrotestosterone are not essential for these beneficial effects of T in men.
                Bookmark

                Author and article information

                Journal
                American Journal of Physiology-Endocrinology and Metabolism
                American Journal of Physiology-Endocrinology and Metabolism
                American Physiological Society
                0193-1849
                1522-1555
                September 2006
                September 2006
                : 291
                : 3
                : E506-E516
                Article
                10.1152/ajpendo.00058.2006
                16621900
                19949bf6-62ed-4671-ad37-3b6d50ebfe2c
                © 2006
                History

                Comments

                Comment on this article