3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The v-rel oncogene encodes a κB enhancer binding protein that inhibits NF-κB function

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          An inducible transcription factor activates expression of human immunodeficiency virus in T cells.

          Human immunodeficiency virus (HIV) production from latently infected T lymphocytes can be induced with compounds that activate the cells to secrete lymphokines. The elements in the HIV genome which control activation are not known but expression might be regulated through a variety of DNA elements. The cis-acting control elements of the viral genome are enhancer and promoter regions. The virus also encodes trans-acting factors specified by the tat-III and art genes. We have examined whether products specific to activated T cells might stimulate viral transcription by binding to regions on viral DNA. Activation of T cells, which increases HIV expression up to 50-fold, correlated with induction of a DNA binding protein indistinguishable from a recognized transcription factor, called NF-kappa B, with binding sites in the viral enhancer. Mutation of these binding sites abolished inducibility. That NF-kappa B acts in synergy with the viral tat-III gene product to enhance HIV expression in T cells may have implications for the pathogenesis of AIDS (acquired immune deficiency syndrome).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter.

            A simple and efficient method for synthesizing pure single stranded RNAs of virtually any structure is described. This in vitro transcription system is based on the unusually specific RNA synthesis by bacteriophage SP6 RNA polymerase which initiates transcription exclusively at an SP6 promoter. We have constructed convenient cloning vectors that contain an SP6 promoter immediately upstream from a polylinker sequence. Using these SP6 vectors, optimal conditions have been established for in vitro RNA synthesis. The advantages and uses of SP6 derived RNAs as probes for nucleic acid blot and solution hybridizations are demonstrated. We show that single stranded RNA probes of a high specific activity are easy to prepare and can significantly increase the sensitivity of nucleic acid hybridization methods. Furthermore, the SP6 transcription system can be used to prepare RNA substrates for studies on RNA processing (1,5,9) and translation (see accompanying paper).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              I kappa B: a specific inhibitor of the NF-kappa B transcription factor.

              In cells that do not express immunoglobulin kappa light chain genes, the kappa enhancer binding protein NF-kappa B is found in cytosolic fractions and exhibits DNA binding activity only in the presence of a dissociating agent such as sodium deoxycholate. The dependence on deoxycholate is shown to result from association of NF-kappa B with a 60- to 70-kilodalton inhibitory protein (I kappa B). The fractionated inhibitor can inactivate NF-kappa B from various sources--including the nuclei of phorbol ester-treated cells--in a specific, saturable, and reversible manner. The cytoplasmic localization of the complex of NF-kappa B and I kappa B was supported by enucleation experiments. An active phorbol ester must therefore, presumably by activation of protein kinase C, cause dissociation of a cytoplasmic complex of NF-kappa B and I kappa B by modifying I kappa B. this releases active NF-kappa B which can translocate into the nucleus to activate target enhancers. The data show the existence of a phorbol ester-responsive regulatory protein that acts by controlling the DNA binding activity and subcellular localization of a transcription factor.
                Bookmark

                Author and article information

                Journal
                Cell
                Cell
                Elsevier BV
                00928674
                November 1990
                November 1990
                : 63
                : 4
                : 803-814
                Article
                10.1016/0092-8674(90)90146-6
                2225078
                1995bd66-5cf9-4270-8098-fc73679aa9d7
                © 1990

                http://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article