27
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Journal of Pain Research (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on reporting of high-quality laboratory and clinical findings in all fields of pain research and the prevention and management of pain. Sign up for email alerts here.

      52,235 Monthly downloads/views I 2.832 Impact Factor I 4.5 CiteScore I 1.2 Source Normalized Impact per Paper (SNIP) I 0.655 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Clinimetric properties of the electronic Pain Assessment Tool (ePAT) for aged-care residents with moderate to severe dementia

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Accurate pain assessment is critical to detect pain and facilitate effective pain management in dementia patients. The electronic Pain Assessment Tool (ePAT) is a point-of-care solution that uses automated facial analysis in conjunction with other clinical indicators to evaluate the presence and intensity of pain in patients with dementia. This study aimed to examine clini-metric properties (clinical utility and predictive validity) of the ePAT in this population group.

          Methods

          Data were extracted from a prospective validation (observational) study of the ePAT in dementia patients who were ≥65 years of age, living in a facility for ≥3 months, and had Psychogeriatric Assessment Scales – cognitive scores ≥10. The study was conducted in two residential aged-care facilities in Perth, Western Australia, where residents were sampled using purposive convenience strategy. Predictive validity was measured using accuracy statistics (sensitivity, specificity, positive predictive value, and negative predictive value). Positive and negative clinical utility index (CUI) scores were calculated using Mitchell’s formula. Calculations were based on comparison with the Abbey Pain Scale, which was used as a criterion reference.

          Results

          A total of 400 paired pain assessments for 34 residents (mean age 85.5±6.3 years, range 68.0–93.2 years) with moderate–severe dementia (Psychogeriatric Assessment Scales – cognitive score 11–21) were included in the analysis. Of those, 303 episodes were classified as pain by the ePAT based on a cutoff score of 7. Unadjusted prevalence findings were sensitivity 96.1% (95% CI 93.9%–98.3%), specificity 91.4% (95% CI 85.7%–97.1%), accuracy 95.0% (95% CI 92.9%–97.1%), positive predictive value 97.4% (95% CI 95.6%–99.2%), negative predictive value 87.6% (95% CI 81.1%–94.2%), CUI + 0.936 (95% CI 0.911–0.960), CUI 0.801 (95% CI 0.748–0.854).

          Conclusion

          The clinimetric properties demonstrated were excellent, thus supporting the clinical usefulness of the ePAT when identifying pain in patients with moderate–severe dementia.

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          The meaning and use of the area under a receiver operating characteristic (ROC) curve.

          A representation and interpretation of the area under a receiver operating characteristic (ROC) curve obtained by the "rating" method, or by mathematical predictions based on patient characteristics, is presented. It is shown that in such a setting the area represents the probability that a randomly chosen diseased subject is (correctly) rated or ranked with greater suspicion than a randomly chosen non-diseased subject. Moreover, this probability of a correct ranking is the same quantity that is estimated by the already well-studied nonparametric Wilcoxon statistic. These two relationships are exploited to (a) provide rapid closed-form expressions for the approximate magnitude of the sampling variability, i.e., standard error that one uses to accompany the area under a smoothed ROC curve, (b) guide in determining the size of the sample required to provide a sufficiently reliable estimate of this area, and (c) determine how large sample sizes should be to ensure that one can statistically detect differences in the accuracy of diagnostic techniques.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests.

            We review the principles and practical application of receiver-operating characteristic (ROC) analysis for diagnostic tests. ROC analysis can be used for diagnostic tests with outcomes measured on ordinal, interval or ratio scales. The dependence of the diagnostic sensitivity and specificity on the selected cut-off value must be considered for a full test evaluation and for test comparison. All possible combinations of sensitivity and specificity that can be achieved by changing the test's cut-off value can be summarised using a single parameter; the area under the ROC curve. The ROC technique can also be used to optimise cut-off values with regard to a given prevalence in the target population and cost ratio of false-positive and false-negative results. However, plots of optimisation parameters against the selected cut-off value provide a more-direct method for cut-off selection. Candidates for such optimisation parameters are linear combinations of sensitivity and specificity (with weights selected to reflect the decision-making situation), odds ratio, chance-corrected measures of association (e. g. kappa) and likelihood ratios. We discuss some recent developments in ROC analysis, including meta-analysis of diagnostic tests, correlated ROC curves (paired-sample design) and chance- and prevalence-corrected ROC curves.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Construct validity in psychological tests.

                Bookmark

                Author and article information

                Journal
                J Pain Res
                J Pain Res
                Journal of Pain Research
                Journal of Pain Research
                Dove Medical Press
                1178-7090
                2018
                01 June 2018
                : 11
                : 1037-1044
                Affiliations
                [1 ]School of Pharmacy, Curtin University, Perth, Australia
                [2 ]Division of Pharmacy, Faculty of Medicine, University of Prishtina, Pristina, Kosovo
                Author notes
                Correspondence: Kreshnik Hoti, Division of Pharmacy, Faculty of Medicine, University of Prishtina, Xhorxh Bush Street, Pristina 10000, Kosovo, Tel +377 44 945 173, Email kreshnik.hoti@ 123456uni-pr.edu
                Article
                jpr-11-1037
                10.2147/JPR.S158793
                5989701
                29910632
                19a195d2-91e0-4290-9135-8e3f1a41c9b9
                © 2018 Hoti et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Anesthesiology & Pain management
                epat,painchek™,pain assessment,dementia,predictive validity,clinical utility,automated facial analysis

                Comments

                Comment on this article