62
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Learning dynamics explains human behavior in Prisoner's Dilemma on networks

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cooperative behavior lies at the very basis of human societies, yet its evolutionary origin remains a key unsolved puzzle. Whereas reciprocity or conditional cooperation is one of the most prominent mechanisms proposed to explain the emergence of cooperation in social dilemmas, recent experimental findings on networked Prisoner's Dilemma games suggest that conditional cooperation also depends on the previous action of the player---namely on the `mood' in which the player currently is. Roughly, a majority of people behaves as conditional cooperators if they cooperated in the past, while they ignore the context and free-ride with high probability if they did not. However, the ultimate origin of this behavior represents a conundrum itself. Here we aim specifically at providing an evolutionary explanation of moody conditional cooperation. To this end, we perform an extensive analysis of different evolutionary dynamics for players' behavioral traits---ranging from standard processes used in game theory based on payoff comparison to others that include non-economic or social factors. Our results show that only a dynamic built upon reinforcement learning is able to give rise to evolutionarily stable moody conditional cooperation, and at the end to reproduce the human behaviors observed in the experiments.

          Related collections

          Author and article information

          Journal
          10.1098/rsif.2013.1186
          1401.7287

          General physics,Theoretical computer science
          General physics, Theoretical computer science

          Comments

          Comment on this article