11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      This was the year that was: brain barriers and brain fluid research in 2019

      editorial
      1 , , 2 , 3
      Fluids and Barriers of the CNS
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This editorial highlights advances in brain barrier and brain fluid research published in 2019, as well as addressing current controversies and pressing needs. Topics include recent advances related to: the cerebral endothelium and the neurovascular unit; the choroid plexus, arachnoid membrane; cerebrospinal fluid and the glymphatic hypothesis; the impact of disease states on brain barriers and brain fluids; drug delivery to the brain; and translation of preclinical data to the clinic. This editorial also mourns the loss of two important figures in the field, Malcolm B. Segal and Edward G. Stopa.

          Related collections

          Most cited references160

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A new look at cerebrospinal fluid circulation

          According to the traditional understanding of cerebrospinal fluid (CSF) physiology, the majority of CSF is produced by the choroid plexus, circulates through the ventricles, the cisterns, and the subarachnoid space to be absorbed into the blood by the arachnoid villi. This review surveys key developments leading to the traditional concept. Challenging this concept are novel insights utilizing molecular and cellular biology as well as neuroimaging, which indicate that CSF physiology may be much more complex than previously believed. The CSF circulation comprises not only a directed flow of CSF, but in addition a pulsatile to and fro movement throughout the entire brain with local fluid exchange between blood, interstitial fluid, and CSF. Astrocytes, aquaporins, and other membrane transporters are key elements in brain water and CSF homeostasis. A continuous bidirectional fluid exchange at the blood brain barrier produces flow rates, which exceed the choroidal CSF production rate by far. The CSF circulation around blood vessels penetrating from the subarachnoid space into the Virchow Robin spaces provides both a drainage pathway for the clearance of waste molecules from the brain and a site for the interaction of the systemic immune system with that of the brain. Important physiological functions, for example the regeneration of the brain during sleep, may depend on CSF circulation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Multiplicity of cerebrospinal fluid functions: New challenges in health and disease

            This review integrates eight aspects of cerebrospinal fluid (CSF) circulatory dynamics: formation rate, pressure, flow, volume, turnover rate, composition, recycling and reabsorption. Novel ways to modulate CSF formation emanate from recent analyses of choroid plexus transcription factors (E2F5), ion transporters (NaHCO3 cotransport), transport enzymes (isoforms of carbonic anhydrase), aquaporin 1 regulation, and plasticity of receptors for fluid-regulating neuropeptides. A greater appreciation of CSF pressure (CSFP) is being generated by fresh insights on peptidergic regulatory servomechanisms, the role of dysfunctional ependyma and circumventricular organs in causing congenital hydrocephalus, and the clinical use of algorithms to delineate CSFP waveforms for diagnostic and prognostic utility. Increasing attention focuses on CSF flow: how it impacts cerebral metabolism and hemodynamics, neural stem cell progression in the subventricular zone, and catabolite/peptide clearance from the CNS. The pathophysiological significance of changes in CSF volume is assessed from the respective viewpoints of hemodynamics (choroid plexus blood flow and pulsatility), hydrodynamics (choroidal hypo- and hypersecretion) and neuroendocrine factors (i.e., coordinated regulation by atrial natriuretic peptide, arginine vasopressin and basic fibroblast growth factor). In aging, normal pressure hydrocephalus and Alzheimer's disease, the expanding CSF space reduces the CSF turnover rate, thus compromising the CSF sink action to clear harmful metabolites (e.g., amyloid) from the CNS. Dwindling CSF dynamics greatly harms the interstitial environment of neurons. Accordingly the altered CSF composition in neurodegenerative diseases and senescence, because of adverse effects on neural processes and cognition, needs more effective clinical management. CSF recycling between subarachnoid space, brain and ventricles promotes interstitial fluid (ISF) convection with both trophic and excretory benefits. Finally, CSF reabsorption via multiple pathways (olfactory and spinal arachnoidal bulk flow) is likely complemented by fluid clearance across capillary walls (aquaporin 4) and arachnoid villi when CSFP and fluid retention are markedly elevated. A model is presented that links CSF and ISF homeostasis to coordinated fluxes of water and solutes at both the blood-CSF and blood-brain transport interfaces. Outline 1 Overview 2 CSF formation 2.1 Transcription factors 2.2 Ion transporters 2.3 Enzymes that modulate transport 2.4 Aquaporins or water channels 2.5 Receptors for neuropeptides 3 CSF pressure 3.1 Servomechanism regulatory hypothesis 3.2 Ontogeny of CSF pressure generation 3.3 Congenital hydrocephalus and periventricular regions 3.4 Brain response to elevated CSF pressure 3.5 Advances in measuring CSF waveforms 4 CSF flow 4.1 CSF flow and brain metabolism 4.2 Flow effects on fetal germinal matrix 4.3 Decreasing CSF flow in aging CNS 4.4 Refinement of non-invasive flow measurements 5 CSF volume 5.1 Hemodynamic factors 5.2 Hydrodynamic factors 5.3 Neuroendocrine factors 6 CSF turnover rate 6.1 Adverse effect of ventriculomegaly 6.2 Attenuated CSF sink action 7 CSF composition 7.1 Kidney-like action of CP-CSF system 7.2 Altered CSF biochemistry in aging and disease 7.3 Importance of clearance transport 7.4 Therapeutic manipulation of composition 8 CSF recycling in relation to ISF dynamics 8.1 CSF exchange with brain interstitium 8.2 Components of ISF movement in brain 8.3 Compromised ISF/CSF dynamics and amyloid retention 9 CSF reabsorption 9.1 Arachnoidal outflow resistance 9.2 Arachnoid villi vs. olfactory drainage routes 9.3 Fluid reabsorption along spinal nerves 9.4 Reabsorption across capillary aquaporin channels 10 Developing translationally effective models for restoring CSF balance 11 Conclusion
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              First-in-human trial of blood–brain barrier opening in amyotrophic lateral sclerosis using MR-guided focused ultrasound

              MR-guided focused ultrasound (MRgFUS) is an emerging technology that can accurately and transiently permeabilize the blood-brain barrier (BBB) for targeted drug delivery to the central nervous system. We conducted a single-arm, first-in-human trial to investigate the safety and feasibility of MRgFUS-induced BBB opening in eloquent primary motor cortex in four volunteers with amyotrophic lateral sclerosis (ALS). Here, we show successful BBB opening using MRgFUS as demonstrated by gadolinium leakage at the target site immediately after sonication in all subjects, which normalized 24 hours later. The procedure was well-tolerated with no serious clinical, radiologic or electroencephalographic adverse events. This study demonstrates that non-invasive BBB permeabilization over the motor cortex using MRgFUS is safe, feasible, and reversible in ALS subjects. In future, MRgFUS can be coupled with promising therapeutics providing a targeted delivery platform in ALS.
                Bookmark

                Author and article information

                Contributors
                rkeep@umich.edu
                hazelcjones@btinternet.com
                ldrewes@d.umn.edu
                Journal
                Fluids Barriers CNS
                Fluids Barriers CNS
                Fluids and Barriers of the CNS
                BioMed Central (London )
                2045-8118
                5 March 2020
                5 March 2020
                2020
                : 17
                : 20
                Affiliations
                [1 ]GRID grid.214458.e, ISNI 0000000086837370, Department of Neurosurgery, , University of Michigan, ; R5018 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200 USA
                [2 ]Gagle Brook House, Chesterton, Bicester, OX26 1UF UK
                [3 ]Department of Biomedical Sciences, University of Minnesota Medical School Duluth, Duluth, MN 55812 USA
                Article
                181
                10.1186/s12987-020-00181-9
                7059280
                32138786
                19d603c9-ff10-4e04-8796-939e062a0604
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                Categories
                Editorial
                Custom metadata
                © The Author(s) 2020

                Neurology
                Neurology

                Comments

                Comment on this article