28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      μ-Opioid receptor desensitization: homologous or heterologous?

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There is considerable controversy over whether μ-opioid receptor (MOPr) desensitization is homologous or heterologous and over the mechanisms underlying such desensitization. In different cell types MOPr desensitization has been reported to involve receptor phosphorylation by various kinases, including G-protein-coupled receptor kinases (GRKs), second messenger and other kinases as well as perturbation of the MOPr effector pathway by GRK sequestration of G protein βγ subunits or ion channel modulation. Here we report that in brainstem locus coeruleus (LC) neurons prepared from relatively mature rats (5–8 weeks old) rapid MOPr desensitization induced by the high-efficacy opioid peptides methionine enkephalin and DAMGO was homologous and not heterologous to α 2-adrenoceptors and somatostatin SST 2 receptors. Given that these receptors all couple through G proteins to the same set of G-protein inwardly rectifying (GIRK) channels it is unlikely therefore that in mature neurons MOPr desensitization involves G protein βγ subunit sequestration or ion channel modulation. In contrast, in slices from immature animals (less than postnatal day 20), MOPr desensitization was observed to be heterologous and could be downstream of the receptor. Heterologous MOPr desensitization was not dependent on protein kinase C or c-Jun N-terminal kinase activity, but the change from heterologous to homologous desensitization with age was correlated with a decrease in the expression levels of GRK2 in the LC and other brain regions. The observation that the mechanisms underlying MOPr desensitization change with neuronal development is important when extrapolating to the mature brain results obtained from experiments on expression systems, cell lines and immature neuronal preparations.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Agonist-selective mechanisms of GPCR desensitization.

          The widely accepted model of G protein-coupled receptor (GPCR) regulation describes a system where the agonist-activated receptors couple to G proteins to induce a cellular response, and are subsequently phosphorylated by a family of kinases called the G protein-coupled receptor kinases (GRKs). The GRK-phosphorylated receptor then acts as a substrate for the binding of a family of proteins called arrestins, which uncouple the receptor and G protein so desensitizing the agonist-induced response. Other kinases, principally the second messenger-dependent protein kinases, are also known to play a role in the desensitization of many GPCR responses. It is now clear that there are subtle and complex interactions between GRKs and second messenger-dependent protein kinases in the regulation of GPCR function. Functional selectivity describes the ability of agonists to stabilize different active conformations of the same GPCR. With regard to desensitization, distinct agonist-activated conformations of a GPCR could undergo different molecular mechanisms of desensitization. An example of this is the mu opioid receptor (MOPr), where the agonists morphine and [D-Ala(2),N-MePhe(4),Gly-ol(5)]enkephalin (DAMGO) induce desensitization of the MOPr by different mechanisms, largely protein kinase C (PKC)- or GRK-dependent, respectively. This can be best explained by supposing that these two agonists stabilize distinct conformations of the MOPr, which are nevertheless able to couple to the relevant G-proteins and produce similar responses, yet are sufficiently different to trigger different regulatory processes. There is evidence that other GPCRs also undergo agonist-selective desensitization, but the full therapeutic consequences of this phenomenon await further detailed study.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanisms of rapid opioid receptor desensitization, resensitization and tolerance in brain neurons.

            Agonists acting on µ-opioid receptors (MOR) are very effective analgesics but cause tolerance during long-term or repeated exposure. Intensive efforts have been made to find novel opioid agonists that are efficacious analgesics but can elude the signalling events that cause tolerance. µ-Opioid agonists differentially couple to downstream signalling mechanisms. Some agonists, such as enkephalins, D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO), methadone and sufentanyl are efficacious at mediating G-protein and effector coupling, as well as triggering MOR regulatory events that include MOR phosphorylation, β-arrestin binding, receptor endocytosis and recycling. By contrast, morphine and closely related alkaloids can mediate efficacious MOR-effector coupling but poorly trigger receptor regulation. Several models have been proposed to relate differential MOR regulation by different opioids with their propensity to cause tolerance. Most are based on dogma that β-arrestin-2 (βarr-2) binding causes MOR desensitization and/or that MOR endocytosis and recycling are required for receptor resensitization. This review will examine some of these notions in light of recent evidence establishing that MOR dephosphorylation and resensitization do not require endocytosis. Recent evidence from opioid-treated animals also suggests that impaired MOR-effector coupling is driven, at least in part, by enhanced desensitization, as well as impaired resensitization that appears to be βarr-2 dependent. Better understanding of how chronic exposure to opioids alters receptor regulatory mechanisms may facilitate the development of effective analgesics that produce limited tolerance. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ligand-directed c-Jun N-terminal kinase activation disrupts opioid receptor signaling.

              Ligand-directed signaling has been suggested as a basis for the differences in responses evoked by otherwise receptor-selective agonists. The underlying mechanisms are not understood, yet clearer definition of this concept may be helpful in the development of novel, pathway-selective therapeutic agents. We previously showed that kappa-opioid receptor activation of JNK by one class of ligand, but not another, caused persistent receptor inactivation. In the current study, we found that the mu-opioid receptor (MOR) could be similarly inactivated by a specific ligand class including the prototypical opioid, morphine. Acute analgesic tolerance to morphine and related opioids (morphine-6-glucuronide and buprenorphine) was blocked by JNK inhibition, but not by G protein receptor kinase 3 knockout. In contrast, a second class of mu-opioids including fentanyl, methadone, and oxycodone produced acute analgesic tolerance that was blocked by G protein receptor kinase 3 knockout, but not by JNK inhibition. Acute MOR desensitization, demonstrated by reduced D-Ala(2)-Met(5)-Glyol-enkephalin-stimulated [(35)S]GTPgammaS binding to spinal cord membranes from morphine-pretreated mice, was also blocked by JNK inhibition; however, desensitization of D-Ala(2)-Met(5)-Glyol-enkephalin-stimulated [(35)S]GTPgammaS binding following fentanyl pretreatment was not blocked by JNK inhibition. JNK-mediated receptor inactivation of the kappa-opioid receptor was evident in both agonist-stimulated [(35)S]GTPgammaS binding and opioid analgesic assays; however, gene knockout of JNK 1 selectively blocked kappa-receptor inactivation, whereas deletion of JNK 2 selectively blocked MOR inactivation. These findings suggest that ligand-directed activation of JNK kinases may generally provides an alternate mode of G protein-coupled receptor regulation.
                Bookmark

                Author and article information

                Journal
                Eur J Neurosci
                Eur. J. Neurosci
                ejn
                The European Journal of Neuroscience
                Blackwell Publishing Ltd
                0953-816X
                1460-9568
                December 2012
                24 September 2012
                : 36
                : 12
                : 3636-3642
                Affiliations
                [1 ]School of Physiology & Pharmacology, University of Bristol Bristol, UK
                [2 ]Department of Pharmacy & Pharmacology, University of Bath Bath, UK
                Author notes
                Dr G. Henderson, as above. E-mail: Graeme.henderson@ 123456bris.ac.uk
                [*]

                J.L. and J.D.L. contributed equally to this study.

                [†]

                Present address: Unitat de Farmacologia, Departament de Patologia I Terapèutica Experimental, Universitat de Barcelona, Barcelona, Spain

                Re-use of this article is permitted in accordance with the Terms and Conditions set out at http://wileyonlinelibrary.com/onlineopen#OnlineOpen_Terms

                Article
                10.1111/ejn.12003
                3527680
                23002724
                19e95d52-5429-4144-802e-6c3f3de9f1ce
                European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd

                Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation.

                History
                : 08 May 2012
                : 14 August 2012
                : 15 August 2012
                Categories
                Synaptic Mechanisms

                Neurosciences
                desensitization,gpcr,opioid receptor,opioids,rat
                Neurosciences
                desensitization, gpcr, opioid receptor, opioids, rat

                Comments

                Comment on this article