23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Involvement of the Bradykinin B 1 Receptor in Microglial Activation: In Vitro and In Vivo Studies

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The importance of brain inflammation to Alzheimer’s disease (AD) pathogenesis has been accepted of late, with it currently being held that brain inflammation aggravates AD pathology. One important aspect of brain inflammation is the recruitment and activation of microglia, a process termed microgliosis. Kinins and bradykinin (BK), in particular, are major pro-inflammatory mediators in the periphery, although all of the factors comprising the kinin system have also been described in the brain. Moreover, it was shown that the amyloid β (Aβ) peptide (a component of AD plaques) enhances kinin secretion and activates BK receptors that can, in turn, stimulate Aβ production. Still, the role of bradykinin in modulating brain inflammation and AD is not completely understood. In this study, we aimed to investigate the roles of the bradykinin B 1 receptor (B 1R) and bradykinin B 2 receptor (B 2R) in regulating microglial secretion of pro-inflammatory factors in vitro. Furthermore, the effects of intranasal administration of specific B 1R and B 2R antagonists on Aβ burden and microglial accumulation in the brains of transgenic AD mice were studied. The data obtained show that neither R-715 (a B 1R antagonist) nor HOE 140 (a B 2R antagonist) altered microglial cell viability. However, R-715, but not HOE 140, markedly increased lipopolysaccharide-induced nitric oxide (NO) and tumor necrosis factor-alpha (TNF-α) release, as well as inducible nitric oxide synthase expression in BV2 microglial cells. Neither antagonist altered NO nor TNF-α production in non-stimulated cells. We also showed that intranasal administration of R-715 but not HOE 140 to 8-week-old 5X familial AD mice enhanced amyloid burden and microglia/macrophage accumulation in the cortex. To conclude, we provide evidence supporting a role of B 1R in brain inflammation and in the regulation of amyloid deposition in AD mice, possibly with microglial/macrophage involvement. Further studies are required to test whether modulation of this receptor can serve as a novel therapeutic strategy for AD.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Microglial cells internalize aggregates of the Alzheimer's disease amyloid beta-protein via a scavenger receptor.

          Microglia are immune system cells associated with Alzheimer's disease plaques containing beta-amyloid (A beta). Murine microglia internalize microaggregates of fluorescently labeled or radioiodinated A beta peptide 1-42. Uptake was confirmed using aggregates of unlabeled A beta detected by immunofluorescence. Uptake of A beta was reduced by coincubation with excess acetyl-low density lipoprotein (Ac-LDL) or other scavenger receptor (SR) ligands, and Dil-labeled Ac-LDL uptake by microglia was blocked by excess A beta. CHO cells transfected with class A or B SRs showed significantly enhanced uptake of A beta. These results show that microglia express SRs that may play a significant role in the clearance of A beta plaques. Binding to SRs could activate inflammation responses that contribute to the pathology of Alzheimer's disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Intranasal Insulin as a Treatment for Alzheimer’s Disease: A Review of Basic Research and Clinical Evidence

            Research in animals and humans has associated Alzheimer’s disease (AD) with decreased cerebrospinal fluid levels of insulin in combination with decreased insulin sensitivity (insulin resistance) in the brain. This phenomenon is accompanied by attenuated receptor expression of insulin and insulin-like growth factor, enhanced serine phosphorylation of insulin receptor substrate-1, and impaired transport of insulin across the blood-brain barrier. Moreover, clinical trials have demonstrated that intranasal insulin improves both memory performance and metabolic integrity of the brain in patients suffering from AD or its prodrome, mild cognitive impairment. These results, in conjunction with the finding that insulin mitigates hippocampal synapse vulnerability to beta amyloid, a peptide thought to be causative in the development of AD, provide a strong rationale for hypothesizing that pharmacological strategies bolstering brain insulin signaling, such as intranasal administration of insulin, could have significant potential in the treatment and prevention of AD. With this view in mind, the review at hand will present molecular mechanisms potentially underlying the memory-enhancing and neuroprotective effects of intranasal insulin. Then, we will discuss the results of intranasal insulin studies that have demonstrated that enhancing brain insulin signaling improves memory and learning processes in both cognitively healthy and impaired humans. Finally, we will provide an overview of neuroimaging studies indicating that disturbances in insulin metabolism—such as insulin resistance in obesity, type 2 diabetes and AD—and altered brain responses to insulin are linked to decreased cerebral volume and especially to hippocampal atrophy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A cell surface receptor complex for fibrillar beta-amyloid mediates microglial activation.

              Senile plaques found in the Alzheimer's disease brain are foci of local inflammatory reactions mediated by plaque-associated microglia. The interaction of microglia with compacted deposits of beta-amyloid (Abeta) fibrils results in the stimulation of intracellular Tyr kinase-based signaling cascades and cellular activation, leading to the secretion of proinflammatory molecules. This study identifies a cell surface receptor complex that mediates the binding of microglia to Abeta fibrils and the subsequent activation of intracellular signaling pathways leading to a proinflammatory response. The receptor complex includes the B-class scavenger receptor CD36, the integrin-associated protein/CD47, and the alpha(6)beta(1)-integrin. Antagonists of scavenger receptors, CD36, CD47, and alpha(6)beta(1) inhibited the adhesion of THP-1 monocytes to Abeta fibrils. In addition, peptide competitors of Abeta fibril interactions with CD36, scavenger receptors, CD47, and the alpha(6)beta(1)-integrin inhibited Abeta stimulation of Tyr kinase-based signaling cascades in both THP-1 monocytes and murine microglia as well as interleukin 1beta production. A scavenger receptor antagonist and antibodies specific for CD36 and the beta(1)-integrin subunit also inhibited the Abeta-stimulated generation of reactive oxygen species. Importantly, the principal components of this receptor complex are shared with those for other fibrillar proteins and thus represent general elements through which myeloid lineage cells recognize complex fibrillar proteins. Identification of the cell surface molecules that interact with Abeta fibrils and mediate their activation of intracellular signaling cascades represents a potential intervention point in the treatment of Alzheimer's disease.
                Bookmark

                Author and article information

                Contributors
                URI : http://frontiersin.org/people/u/391834
                Journal
                Front Endocrinol (Lausanne)
                Front Endocrinol (Lausanne)
                Front. Endocrinol.
                Frontiers in Endocrinology
                Frontiers Media S.A.
                1664-2392
                19 April 2017
                2017
                : 8
                : 82
                Affiliations
                [1] 1Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev , Beer-Sheva, Israel
                Author notes

                Edited by: Hubert Vaudry, University of Rouen, France

                Reviewed by: Mami Noda, Kyushu University, Japan; Laurent Gautron, University of Texas Southwestern Medical Center, USA; Marie-Christine Tonon, University of Rouen, France

                *Correspondence: Sigal Fleisher-Berkovich, fleisher@ 123456bgu.ac.il

                Specialty section: This article was submitted to Neuroendocrine Science, a section of the journal Frontiers in Endocrinology

                Article
                10.3389/fendo.2017.00082
                5396024
                19ee5e2b-ca57-4563-8987-b002ec2230ee
                Copyright © 2017 Asraf, Torika, Danon and Fleisher-Berkovich.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 14 November 2016
                : 30 March 2017
                Page count
                Figures: 6, Tables: 0, Equations: 0, References: 48, Pages: 9, Words: 5659
                Funding
                Funded by: Israel Science Foundation 10.13039/501100003977
                Award ID: 101/11-16
                Categories
                Endocrinology
                Original Research

                Endocrinology & Diabetes
                bradykinin,brain inflammation,hoe 140,microglia,r-715
                Endocrinology & Diabetes
                bradykinin, brain inflammation, hoe 140, microglia, r-715

                Comments

                Comment on this article