6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Testing of the analytical anisotropic algorithm for photon dose calculation.

      Medical physics
      Algorithms, Anisotropy, Body Burden, Computer Simulation, Models, Biological, Particle Accelerators, Photons, therapeutic use, Radiometry, methods, Radiotherapy Dosage, Radiotherapy Planning, Computer-Assisted, Relative Biological Effectiveness, Reproducibility of Results, Sensitivity and Specificity

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The analytical anisotropic algorithm (AAA) was implemented in the Eclipse (Varian Medical Systems) treatment planning system to replace the single pencil beam (SPB) algorithm for the calculation of dose distributions for photon beams. AAA was developed to improve the dose calculation accuracy, especially in heterogeneous media. The total dose deposition is calculated as the superposition of the dose deposited by two photon sources (primary and secondary) and by an electron contamination source. The photon dose is calculated as a three-dimensional convolution of Monte-Carlo precalculated scatter kernels, scaled according to the electron density matrix. For the configuration of AAA, an optimization algorithm determines the parameters characterizing the multiple source model by optimizing the agreement between the calculated and measured depth dose curves and profiles for the basic beam data. We have combined the acceptance tests obtained in three different departments for 6, 15, and 18 MV photon beams. The accuracy of AAA was tested for different field sizes (symmetric and asymmetric) for open fields, wedged fields, and static and dynamic multileaf collimation fields. Depth dose behavior at different source-to-phantom distances was investigated. Measurements were performed on homogeneous, water equivalent phantoms, on simple phantoms containing cork inhomogeneities, and on the thorax of an anthropomorphic phantom. Comparisons were made among measurements, AAA, and SPB calculations. The optimization procedure for the configuration of the algorithm was successful in reproducing the basic beam data with an overall accuracy of 3%, 1 mm in the build-up region, and 1%, 1 mm elsewhere. Testing of the algorithm in more clinical setups showed comparable results for depth dose curves, profiles, and monitor units of symmetric open and wedged beams below dmax. The electron contamination model was found to be suboptimal to model the dose around dmax, especially for physical wedges at smaller source to phantom distances. For the asymmetric field verification, absolute dose difference of up to 4% were observed for the most extreme asymmetries. Compared to the SPB, the penumbra modeling is considerably improved (1%, 1 mm). At the interface between solid water and cork, profiles show a better agreement with AAA. Depth dose curves in the cork are substantially better with AAA than with SPB. Improvements are more pronounced for 18 MV than for 6 MV. Point dose measurements in the thoracic phantom are mostly within 5%. In general, we can conclude that, compared to SPB, AAA improves the accuracy of dose calculations. Particular progress was made with respect to the penumbra and low dose regions. In heterogeneous materials, improvements are substantial and more pronounced for high (18 MV) than for low (6 MV) energies.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          A technique for the quantitative evaluation of dose distributions.

          The commissioning of a three-dimensional treatment planning system requires comparisons of measured and calculated dose distributions. Techniques have been developed to facilitate quantitative comparisons, including superimposed isodoses, dose-difference, and distance-to-agreement (DTA) distributions. The criterion for acceptable calculation performance is generally defined as a tolerance of the dose and DTA in regions of low and high dose gradients, respectively. The dose difference and DTA distributions complement each other in their useful regions. A composite distribution has recently been developed that presents the dose difference in regions that fail both dose-difference and DTA comparison criteria. Although the composite distribution identifies locations where the calculation fails the preselected criteria, no numerical quality measure is provided for display or analysis. A technique is developed to unify dose distribution comparisons using the acceptance criteria. The measure of acceptability is the multidimensional distance between the measurement and calculation points in both the dose and the physical distance, scaled as a fraction of the acceptance criteria. In a space composed of dose and spatial coordinates, the acceptance criteria form an ellipsoid surface, the major axis scales of which are determined by individual acceptance criteria and the center of which is located at the measurement point in question. When the calculated dose distribution surface passes through the ellipsoid, the calculation passes the acceptance test for the measurement point. The minimum radial distance between the measurement point and the calculation points (expressed as a surface in the dose-distance space) is termed the gamma index. Regions where gamma > 1 correspond to locations where the calculation does not meet the acceptance criteria. The determination of gamma throughout the measured dose distribution provides a presentation that quantitatively indicates the calculation accuracy. Examples of a 6 MV beam penumbra are used to illustrate the gamma index.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A quantitative evaluation of IMRT dose distributions: refinement and clinical assessment of the gamma evaluation.

            Although intensity modulated radiotherapy (IMRT) is a step forward in comparison to conventional, static beam delivery, quality assurance is more complex and labour intensive, demanding detailed two-dimensional dosimetric verification. Regardless of the technique used for measuring the dose distribution, what is essential to the implementation of routine verification of IMRT fields is the efficient and accurate comparison of the measured versus desired dose distribution. In order to achieve a fast, yet accurate quantitative measure of the correspondence between measured and calculated dose, the theoretical concept of the gamma evaluation method presented by Low et al. (Med. Phys., 25 (1998) 656) was converted into a calculation algorithm, taking into account practical considerations related to the discrete nature of the data. A filter cascade of multiple levels was designed to obtain fast and accurate comparison of the two dose distributions under evaluation. The actual comparison consists of classification into accepted or rejected datapoints with respect to user-defined acceptance criteria (dose difference and distance to agreement). The presented algorithm was tested on dosimetric images calculated and/or acquired by means of a liquid filled portal imaging device during the course of intensity modulated treatments of prostate cancer, including pre-treatment verification as well as verification during treatment. To assess its ability to intercept possible errors in dose delivery, clinically relevant errors were deliberately introduced into the dose distributions. The developed gamma filter method proves successful in the efficient comparison of calculated versus measured IMRT dose distribution. Secondly, intercomparison of dosimetric images acquired during different treatment sessions illustrate its potential to highlight variations in the dosimetric images. The simulated errors were unmistakably intercepted. The readily obtained gamma evaluation images are an easy tool for quality control of IMRT fields. To reduce the artefacts related to the discrete nature and limited resolution of the data, a fast and accurate filter cascade was developed, offering the possibility to use the gamma method for day to day evaluation of patient dosimetric portal images with or without comparison to a predicted portal dose distribution.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A 3D photon superposition/convolution algorithm and its foundation on results of Monte Carlo calculations.

              Based on previous publications on a triple Gaussian analytical pencil beam model and on Monte Carlo calculations using Monte Carlo codes GEANT-Fluka, versions 95, 98, 2002, and BEAMnrc/EGSnrc, a three-dimensional (3D) superposition/convolution algorithm for photon beams (6 MV, 18 MV) is presented. Tissue heterogeneity is taken into account by electron density information of CT images. A clinical beam consists of a superposition of divergent pencil beams. A slab-geometry was used as a phantom model to test computed results by measurements. An essential result is the existence of further dose build-up and build-down effects in the domain of density discontinuities. These effects have increasing magnitude for field sizes < or =5.5 cm(2) and densities < or = 0.25 g cm(-3), in particular with regard to field sizes considered in stereotaxy. They could be confirmed by measurements (mean standard deviation 2%). A practical impact is the dose distribution at transitions from bone to soft tissue, lung or cavities.
                Bookmark

                Author and article information

                Comments

                Comment on this article