47
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Dexamethasone Treatment and ICAM-1 Deficiency Impair VEGF-Induced Angiogenesis in Adult Brain

      review-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Infusion of exogenous vascular endothelial growth factor (VEGF) into adult brain at doses above 60 ng/day induces dramatic angiogenesis accompanied by vascular leak and inflammation. Blood vessels formed by this treatment are dilated and tortuous, exhibiting a pathological morphology. Pathological VEGF-induced angiogenesis is preceded by vascular leak and inflammation, which have been proposed to mediate subsequent angiogenesis. Methods: To test this hypothesis, we infused VEGF into the brains of adult rats to induce pathological angiogenesis. Some of these rats were treated with dexamethasone, a potent anti-inflammatory glucocorticoid, to inhibit inflammation and edema. Results: We demonstrate that inhibition of inflammation by treatment with dexamethasone significantly attenuated VEGF-induced pathological angiogenesis. To present converging evidence that inflammation may be important in this angiogenic process, we also demonstrate that mice genetically deficient in the inflammatory mediator intercellular adhesion molecule-1 have attenuated VEGF-induced angiogenesis. These same mice showed normal amounts of physiological angiogenesis in response to enriched environments, however, suggesting that a generalized reduction in vascular plasticity could not account for their poor angiogenic response to VEGF. Conclusions: Taken together, the data from these experiments suggest that the inflammation which occurs before or during VEGF-induced pathological brain angiogenesis plays a contributory role in the pathological angiogenic process.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          VEGF164-mediated Inflammation Is Required for Pathological, but Not Physiological, Ischemia-induced Retinal Neovascularization

          Hypoxia-induced VEGF governs both physiological retinal vascular development and pathological retinal neovascularization. In the current paper, the mechanisms of physiological and pathological neovascularization are compared and contrasted. During pathological neovascularization, both the absolute and relative expression levels for VEGF164 increased to a greater degree than during physiological neovascularization. Furthermore, extensive leukocyte adhesion was observed at the leading edge of pathological, but not physiological, neovascularization. When a VEGF164-specific neutralizing aptamer was administered, it potently suppressed the leukocyte adhesion and pathological neovascularization, whereas it had little or no effect on physiological neovascularization. In parallel experiments, genetically altered VEGF164-deficient (VEGF120/188) mice exhibited no difference in physiological neovascularization when compared with wild-type (VEGF+/+) controls. In contrast, administration of a VEGFR-1/Fc fusion protein, which blocks all VEGF isoforms, led to significant suppression of both pathological and physiological neovascularization. In addition, the targeted inactivation of monocyte lineage cells with clodronate-liposomes led to the suppression of pathological neovascularization. Conversely, the blockade of T lymphocyte–mediated immune responses with an anti-CD2 antibody exacerbated pathological neovascularization. These data highlight important molecular and cellular differences between physiological and pathological retinal neovascularization. During pathological neovascularization, VEGF164 selectively induces inflammation and cellular immunity. These processes provide positive and negative angiogenic regulation, respectively. Together, new therapeutic approaches for selectively targeting pathological, but not physiological, retinal neovascularization are outlined.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ultrastructure and molecular histology of rabbit hind-limb collateral artery growth (arteriogenesis).

            Previous studies in the canine heart had shown that the growth of collateral arteries occurs via proliferative enlargement of pre-existing arteriolar connections (arteriogenesis). In the present study, we investigated the ultrastructure and molecular histology of growing and remodeling collateral arteries that develop after femoral artery occlusion in rabbits as a function of time from 2 h to 240 days after occlusion. Pre-existent arteriolar collaterals had a diameter of about 50 microm. They consisted of one to two layers of smooth muscle cells (SMCs) and were morphologically indistinguishable from normal arterioles. The stages of arteriogenesis consisted of arteriolar thinning, followed by transformation of SMCs from the contractile- into the proliferative- and synthetic phenotype. Endothelial cells (ECs) and SMCs proliferated, and SMCs migrated and formed a neo-intima. Intercellular adhesion molecule (ICAM-1) and vascular cell adhesion molecule (VCAM-1) showed early upregulation in ECs, which was accompanied by accumulation of blood-derived macrophages. Mitosis of ECs and SMCs started about 24 h after occlusion, whereas adhesion molecule expression and monocyte adhesion occurred as early as 12 h after occlusion, suggesting a role of monocytes in vascular cell proliferation. Treatment of rabbits with the pro-inflammatory cytokine MCP-1 increased monocyte adhesion and accelerated vascular remodeling. In vitro shear-stress experiments in cultured ECs revealed an increased phosphorylation of the focal contacts after 30 min and induction of ICAM-1 and VCAM-1 expression between 2 h and 6 h after shear onset, suggesting that shear stress may be the initiating event. We conclude that the process of arteriogenesis, which leads to the positive remodeling of an arteriole into an artery up to 12 times its original size, can be modified by modulators of inflammation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              VEGFR-1-selective VEGF homologue PlGF is arteriogenic: evidence for a monocyte-mediated mechanism.

              Two signaling receptors for vascular endothelial growth factor (VEGF) in the vasculature are known with not yet well-understood roles in collateral vessel growth (arteriogenesis). In this study, we examined the involvement of the two VEGF receptors in arteriogenesis. Therefore, we used the VEGF homologue placenta growth factor (PlGF), which only binds to VEGFR-1 and VEGF-E, which only recognizes VEGFR-2. These peptides were locally infused over 7 days after ligation of the femoral artery in the rabbit. Evaluation of collateral growth by determining collateral conductance and angiographic scores demonstrated that the VEGFR-1-specific PlGF contributed significantly more to arteriogenesis than the VEGFR-2 specific VEGF-E. The combination of VEGF-E and PlGF did not exceed the effect of PlGF alone, indicating that cooperation of the two VEGF receptors in endothelial cell signaling is not required for arteriogenesis. In an in vitro model of angiogenesis, VEGF and VEGF-E were comparably active, whereas PlGF displayed no activity when given alone and did not further increase the effects of VEGF or VEGF-E. However, PlGF was as potent as VEGF when monocyte activation was assessed by monitoring integrin surface expression. In addition, accumulation of activated monocytes/macrophages in the periphery of collateral vessels in PlGF-treated animals was observed. Furthermore, in monocyte-depleted animals, the ability of PlGF to enhance collateral growth in the rabbit model and to rescue impaired arteriogenesis in PlGF gene-deficient mice was abrogated. Together, these data indicate that the arteriogenic activity observed with the VEGFR-1-specific PlGF is caused by its monocyte-activating properties.
                Bookmark

                Author and article information

                Journal
                JVR
                J Vasc Res
                10.1159/issn.1018-1172
                Journal of Vascular Research
                S. Karger AG
                1018-1172
                1423-0135
                2007
                June 2007
                30 March 2007
                : 44
                : 4
                : 283-291
                Affiliations
                aNeuropsychology Doctoral Subprogram, Graduate Center of the City University of New York, N.Y., and bDepartment of Psychology, Queens College of the City University of New York, Flushing, N.Y., cRegeneron Pharmaceuticals, Tarrytown, N.Y., dNeuroscience Doctoral Subprogram, Graduate Center of the City University of New York, New York, N.Y., USA
                Article
                101450 J Vasc Res 2007;44:283–291
                10.1159/000101450
                17406120
                1a0954fc-118e-4964-b229-fce616d3685a
                © 2007 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 16 December 2005
                : 26 January 2007
                Page count
                Figures: 7, References: 28, Pages: 9
                Categories
                Research Paper

                General medicine,Neurology,Cardiovascular Medicine,Internal medicine,Nephrology
                Enriched environments,Inflammation,Intercellular adhesion molecule-1,Brain,Dexamethasone,Angiogenesis

                Comments

                Comment on this article