26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification and Characterization of Cyprinid Herpesvirus-3 (CyHV-3) Encoded MicroRNAs

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          MicroRNAs (miRNAs) are a class of small non-coding RNAs involved in post-transcriptional gene regulation. Some viruses encode their own miRNAs and these are increasingly being recognized as important modulators of viral and host gene expression. Cyprinid herpesvirus 3 (CyHV-3) is a highly pathogenic agent that causes acute mass mortalities in carp ( Cyprinus carpio carpio) and koi ( Cyprinus carpio koi) worldwide. Here, bioinformatic analyses of the CyHV-3 genome suggested the presence of non-conserved precursor miRNA (pre-miRNA) genes. Deep sequencing of small RNA fractions prepared from in vitro CyHV-3 infections led to the identification of potential miRNAs and miRNA–offset RNAs (moRNAs) derived from some bioinformatically predicted pre-miRNAs. DNA microarray hybridization analysis, Northern blotting and stem-loop RT-qPCR were then used to definitively confirm that CyHV-3 expresses two pre-miRNAs during infection in vitro. The evidence also suggested the presence of an additional four high-probability and two putative viral pre-miRNAs. MiRNAs from the two confirmed pre-miRNAs were also detected in gill tissue from CyHV-3-infected carp. We also present evidence that one confirmed miRNA can regulate the expression of a putative CyHV-3-encoded dUTPase. Candidate homologues of some CyHV-3 pre-miRNAs were identified in CyHV-1 and CyHV-2. This is the first report of miRNA and moRNA genes encoded by members of the Alloherpesviridae family, a group distantly related to the Herpesviridae family. The discovery of these novel CyHV-3 genes may help further our understanding of the biology of this economically important virus and their encoded miRNAs may have potential as biomarkers for the diagnosis of latent CyHV-3.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs.

          MicroRNAs (miRNAs) are a class of noncoding RNAs that post-transcriptionally regulate gene expression in plants and animals. To investigate the influence of miRNAs on transcript levels, we transfected miRNAs into human cells and used microarrays to examine changes in the messenger RNA profile. Here we show that delivering miR-124 causes the expression profile to shift towards that of brain, the organ in which miR-124 is preferentially expressed, whereas delivering miR-1 shifts the profile towards that of muscle, where miR-1 is preferentially expressed. In each case, about 100 messages were downregulated after 12 h. The 3' untranslated regions of these messages had a significant propensity to pair to the 5' region of the miRNA, as expected if many of these messages are the direct targets of the miRNAs. Our results suggest that metazoan miRNAs can reduce the levels of many of their target transcripts, not just the amount of protein deriving from these transcripts. Moreover, miR-1 and miR-124, and presumably other tissue-specific miRNAs, seem to downregulate a far greater number of targets than previously appreciated, thereby helping to define tissue-specific gene expression in humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans.

            Two small temporal RNAs (stRNAs), lin-4 and let-7, control developmental timing in Caenorhabditis elegans. We find that these two regulatory RNAs are members of a large class of 21- to 24-nucleotide noncoding RNAs, called microRNAs (miRNAs). We report on 55 previously unknown miRNAs in C. elegans. The miRNAs have diverse expression patterns during development: a let-7 paralog is temporally coexpressed with let-7; miRNAs encoded in a single genomic cluster are coexpressed during embryogenesis; and still other miRNAs are expressed constitutively throughout development. Potential orthologs of several of these miRNA genes were identified in Drosophila and human genomes. The abundance of these tiny RNAs, their expression patterns, and their evolutionary conservation imply that, as a class, miRNAs have broad regulatory functions in animals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gene silencing by microRNAs: contributions of translational repression and mRNA decay.

              Despite their widespread roles as regulators of gene expression, important questions remain about target regulation by microRNAs. Animal microRNAs were originally thought to repress target translation, with little or no influence on mRNA abundance, whereas the reverse was thought to be true in plants. Now, however, it is clear that microRNAs can induce mRNA degradation in animals and, conversely, translational repression in plants. Recent studies have made important advances in elucidating the relative contributions of these two different modes of target regulation by microRNAs. They have also shed light on the specific mechanisms of target silencing, which, although it differs fundamentally between plants and animals, shares some common features between the two kingdoms.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                30 April 2015
                2015
                : 10
                : 4
                : e0125434
                Affiliations
                [1 ]Marine Institute, Rinville, Oranmore, Co. Galway, Ireland
                [2 ]School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
                [3 ]Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Weymouth, Dorset, the United Kingdom
                French National Center for Scientific Research - Institut de biologie moléculaire et cellulaire, FRANCE
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: OHD KH KW RH DMS DW. Performed the experiments: OHD KH KW RH DMS DW. Analyzed the data: OHD KH KW RH DMS DW. Contributed reagents/materials/analysis tools: OHD KH KW RH DMS DW. Wrote the paper: OHD KH KW DW.

                Article
                PONE-D-14-52903
                10.1371/journal.pone.0125434
                4416013
                25928140
                1a1dc75a-6448-4ed4-bb5f-ed6012b5279d
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 15 December 2014
                : 17 March 2015
                Page count
                Figures: 12, Tables: 4, Pages: 36
                Funding
                This work was supported by the Marine Institute Research Fellowship programme ( https://www.marine.ie; OHD), Defra ( https://www.gov.uk/government/organisations/department-for-environment-food-rural-affairs; research contracts FC1193 and FC1202; KW), the Programme for Research in Third Level Institutions (PRTLI) ( http://www.hea.ie/en/prtli,official; RH, DW) Cycle 5 [The Bioanalysis and Therapeutics (BioAT) programme at DCU]. The PRTLI is co-funded through the European Regional Development Fund (ERDF), part of the European Union Structural Funds Programme 2007–2013 ( http://eustructuralfunds.gov.ie). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                Relevant data are contained within the paper and its Supporting Information files. All unique sequence tags obtained following virus infections are available for download via the Dryad Digital Repository ( http://dx.doi.org/10.5061/dryad.3c7m4).

                Uncategorized
                Uncategorized

                Comments

                Comment on this article