10
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Anti-Inflammatory Cytokines: Expression and Action in the Brain

      review-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Transforming growth factor-β<sub>1</sub> (TGF-β<sub>1</sub>) and interleukin (IL)-10 gene expression is equivocal in normal brain and upregulated in over a dozen central and peripheral diseases/disorders. The patterns of specific expression of cytokines differ in these diseases. Published data indicate that these cytokines are produced by and act on both neurons and glial cells. Although their actions are commonly viewed as ‘anti-inflammatory’, they protect neurons and downregulate the responses of glial cells to diseases/disorders in the absence of inflammation. Their actions counterbalance the actions of elevated IL-1 and/or tumor necrosis factor-α to maintain homeostasis. Their therapeutic potential will be realized by improving our understanding of their place in neural cytokine networks.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          TGF-beta signal transduction.

          The transforming growth factor beta (TGF-beta) family of growth factors control the development and homeostasis of most tissues in metazoan organisms. Work over the past few years has led to the elucidation of a TGF-beta signal transduction network. This network involves receptor serine/threonine kinases at the cell surface and their substrates, the SMAD proteins, which move into the nucleus, where they activate target gene transcription in association with DNA-binding partners. Distinct repertoires of receptors, SMAD proteins, and DNA-binding partners seemingly underlie, in a cell-specific manner, the multifunctional nature of TGF-beta and related factors. Mutations in these pathways are the cause of various forms of human cancer and developmental disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease.

            Transforming growth factor-beta 1 (TGF-beta 1) is a multifunctional growth factor that has profound regulatory effects on many developmental and physiological processes. Disruption of the TGF-beta 1 gene by homologous recombination in murine embryonic stem cells enables mice to be generated that carry the disrupted allele. Animals homozygous for the mutated TGF-beta 1 allele show no gross developmental abnormalities, but about 20 days after birth they succumb to a wasting syndrome accompanied by a multifocal, mixed inflammatory cell response and tissue necrosis, leading to organ failure and death. TGF-beta 1-deficient mice may be valuable models for human immune and inflammatory disorders, including autoimmune diseases, transplant rejection and graft versus host reactions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TGF-beta1 promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice.

              Abnormal accumulation of the amyloid-beta peptide (Abeta) in the brain appears crucial to pathogenesis in all forms of Alzheimer disease (AD), but the underlying mechanisms in the sporadic forms of AD remain unknown. Transforming growth factor beta1 (TGF-beta1), a key regulator of the brain's responses to injury and inflammation, has been implicated in Abeta deposition in vivo. Here we demonstrate that a modest increase in astroglial TGF-beta1 production in aged transgenic mice expressing the human beta-amyloid precursor protein (hAPP) results in a three-fold reduction in the number of parenchymal amyloid plaques, a 50% reduction in the overall Abeta load in the hippocampus and neocortex, and a decrease in the number of dystrophic neurites. In mice expressing hAPP and TGF-beta1, Abeta accumulated substantially in cerebral blood vessels, but not in parenchymal plaques. In human cases of AD, Abeta immunoreactivity associated with parenchymal plaques was inversely correlated with Abeta in blood vessels and cortical TGF-beta1 mRNA levels. The reduction of parenchymal plaques in hAPP/TGF-beta1 mice was associated with a strong activation of microglia and an increase in inflammatory mediators. Recombinant TGF-beta1 stimulated Abeta clearance in microglial cell cultures. These results demonstrate that TGF-beta1 is an important modifier of amyloid deposition in vivo and indicate that TGF-beta1 might promote microglial processes that inhibit the accumulation of Abeta in the brain parenchyma.
                Bookmark

                Author and article information

                Journal
                NIM
                Neuroimmunomodulation
                10.1159/issn.1021-7401
                Neuroimmunomodulation
                S. Karger AG
                1021-7401
                1423-0216
                2001
                May 2002
                28 May 2002
                : 9
                : 6
                : 295-312
                Affiliations
                Integrative Neural Immune Program, National Institute of Mental Health, National Institutes of Health, Bethesda,Md.,USA
                Article
                59387 Neuroimmunomodulation 2001;9:295–312
                10.1159/000059387
                12045357
                1a211a6e-0c10-4038-875b-f351154962c9
                © 2002 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                Page count
                Figures: 2, Tables: 5, References: 205, Pages: 18
                Categories
                Review

                Endocrinology & Diabetes,Neurology,Nutrition & Dietetics,Sexual medicine,Internal medicine,Pharmacology & Pharmaceutical medicine
                In vivo studies,Interleukin-10,Transforming growth factor-β1 ,In vitro studies,Multiple sclerosis,CNS,Stroke

                Comments

                Comment on this article